47 research outputs found

    Allelic variants of DYX1C1 are not associated with dyslexia in India

    Get PDF
    Dyslexia is a hereditary neurological disorder that manifests as an unexpected difficulty in learning to read despite adequate intelligence, education, and normal senses. The prevalence of dyslexia ranges from 3 to 15% of the school aged children. Many genetic studies indicated that loci on 6p21.3, 15q15-21, and 18p11.2 have been identified as promising candidate gene regions for dyslexia. Recently, it has been suggested that allelic variants of gene, DYX1C1 influence dyslexia. In the present study, exon 2 and 10 of DYX1C1 has been analyzed to verify whether these single nucleotide polymorphisms (SNPs) influence dyslexia, in our population. Our study identified 4 SNPs however, none of these SNPS were found to be significantly associated with dyslexia suggesting DYX1C1 allelic variants are not associated with dyslexia

    The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage

    Get PDF
    BACKGROUND: The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP). However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. RESULTS: The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. CONCLUSION: Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is coincidental with the decline of earliest settlers' population during this period

    Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

    Get PDF
    XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas

    Prevalence and Recovery of Olfactory Dysfunction in COVID-19 Patients

    No full text
    Background: The altered sense of smell or taste has been noted among patients with COVID-19 and might be a useful early symptom of COVID-19 which can be used for screening purposes among the population. The study aimed to describe the prevalence and recovery of new- onset anosmia in patients with confirmed COVID-19 in the Indian rural population. Materials and methods: The prospective, cross-sectional study was conducted at a tertiary care rural teaching hospital, with 600 subjects of RT PCR confirmed COVID-19. Results were analysed for the study using standardized questionnaires to study the onset, characteristics, and recovery of olfactory dysfunction and associated taste disturbances.Results: 52 out of 350 COVID-19 patients who met the inclusion criteria had symptoms of anosmia. The prevalence of anosmia in COVID-19 patients was 8.6%. Among 52 subjects, 17 (32.6%) were female and the remaining 35 (67.4%) were male. The mean age of the study group was 48 years (range 19–72 years). Among these patients, 73% (38/52) of recovery from olfactory dysfunction started within the first week of diagnosis, compared with 19% (10/52) of whom recovery started between the 1st and 2nd weeks after onset. In 6% of patients, recovery started between 2 and 3 weeks after the onset, and the remaining cases started to recover after 3 weeks.Conclusion: We believe that this study will contribute to the increase in clinical suspicion of COVID-19 in patients with symptoms of sudden onset of anosmia, allowing for the early isolation of the suspected patients and consequently aiding in the effective control of the spread. Furthermore, the details of the disease course and recovery of anosmia can guide the clinical management of cases with COVID-19 related olfactory dysfunction. Furthermore, it will guide the treating physician in counseling the patient regarding the prognosis

    Expression of Winged Bean Basic Agglutinin in Spodoptera frugiperda insect cell expression system

    No full text
    In this paper we report the successful expression of the winged bean basic agglutinin (WBA I) in insect cells infected with a recombinant baculovirus carrying the WBA I gene and its characterization in terms of its carbohydrate binding properties. The expressed protein appears to have a lower molecular weight than the native counterpart which is consistent with the lack of glycosylation of the former. Moreover, the expressed protein maintains its dimeric nature. Hence, a role for glycosylation in modulation of dimerization of WBA I is ruled out unlike Erythrina corallodendron (EcorL). Despite this the protein is active, with its sugar specificity unaltered

    The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage

    No full text
    Abstract Background The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP). However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. Results The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. Conclusion Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is coincidental with the decline of earliest settlers' population during this period.</p
    corecore