31 research outputs found

    Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella.

    Get PDF
    Salmonella is an important genus of Gram-negative pathogens, treatment of which has become problematic due to increases in antimicrobial resistance. This is partly attributable to the overexpression of tripartite efflux pumps, particularly the constitutively expressed AcrAB-TolC. Despite its clinical importance, the structure of the Salmonella AcrB transporter remained unknown to-date, with much of our structural understanding coming from the Escherichia coli orthologue. Here, by taking advantage of the styrene maleic acid (SMA) technology to isolate membrane proteins with closely associated lipids, we report the very first experimental structure of Salmonella AcrB transporter. Furthermore, this novel structure provides additional insight into mechanisms of drug efflux as it bears the mutation (G288D), originating from a clinical isolate of Salmonella Typhimurium presenting an increased resistance to fluoroquinolones. Experimental data are complemented by state-of-the-art molecular dynamics (MD) simulations on both the wild type and G288D variant of Salmonella AcrB. Together, these reveal several important differences with respect to the E. coli protein, providing insights into the role of the G288D mutation in increasing drug efflux and extending our understanding of the mechanisms underlying antibiotic resistance

    Crystal Structure of Escherichia coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump

    Get PDF
    Background: While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions. Methodology/Principal Findings: We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 A ˚ resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor. Conclusions/Significance: The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA

    A model for improving microbial biofuel production using a synthetic feedback loop

    Get PDF
    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates

    Assembly and transport mechanism of tripartite drug efflux systems.

    No full text
    Multidrug efflux (MDR) pumps remove a variety of compounds from the cell into the external environment. There are five different classes of MDR pumps in bacteria, and quite often a single bacterial species expresses multiple classes of pumps. Although under normal circumstances MDR pumps confer low-level intrinsic resistance to drugs, the presence of drugs and mutations in regulatory genes lead to high level expression of MDR pumps that can pose problems with therapeutic treatments. This review focuses on the resistance nodulation cell division (RND)-class of MDR pumps that assemble from three proteins. Significant recent advancement in structural aspects of the three pump components has shed new light on the mechanism by which the tripartite efflux pumps extrude drugs. This new information will be critical in developing inhibitors against MDR pumps to improve the potency of prescribed drugs

    Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry.

    No full text
    Potassium channels are dynamic proteins that undergo large conformational changes to regulate the flow of K(+) ions across the cell membrane. Understanding the gating mechanism of these channels therefore requires methods for probing channel structure in both their open and closed conformations. Radiolytic footprinting is used to study the gating mechanism of the inwardly-rectifying potassium channel KirBac3.1. The purified protein stabilized in either open or closed conformations was exposed to focused synchrotron X-ray beams on millisecond timescales to modify solvent accessible amino acid side chains. These modifications were identified and quantified using high-resolution mass spectrometry. The differences observed between the closed and open states were then used to reveal local conformational changes that occur during channel gating. The results provide support for a proposed gating mechanism of the Kir channel and demonstrate a method of probing the dynamic gating mechanism of other integral membrane proteins and ion channels

    Structure and mechanism of drug efflux machinery in Gram negative bacteria.

    No full text
    In Gram-negative bacteria, multi-component machines that span the inner and outer membranes actively extrude drugs and other toxic small compounds. Many of these machines are assembled principally from three different types of components: i) an outer membrane protein that acts as a channel and opens from a sealed resting state during the transport process, ii) an inner membrane protein that transduces proton electrochemical energy into vectorial displacement of the transported compounds, and iii) a bridging, periplasmic component that links the inner and outer membrane proteins. The pumps may assemble transiently, and the association of components is favoured by engaged substrate and the trans-membrane electrochemical potential. We describe recent structural and functional studies on the individual pump components and discuss models that explain how they associate in the dynamic, active assembly. Based on the available data, we suggest that the assembly of these multi-drug efflux pumps is accompanied by induced fit of the outer membrane component driven mainly by accommodation of the periplasmic component

    Exploring ligand recognition and ion flow in comparative models of the human GABA type A receptor.

    No full text
    We present two comparative models of the GABA(A) receptor. Model 1 is based on the 4-A resolution structure of the nicotinic acetylcholine receptor from Torpedo marmorata and represents the unliganded receptor. Two agonists, GABA and muscimol, two benzodiazepines, flunitrazepam and alprazolam, together with the general anaesthetic halothane, have been docked to this model. The ion flow is also explored in model 1 by evaluating the interaction energy of a chloride ion as it traverses the extracellular, transmembrane and intracellular domains of the protein. Model 2 differs from model 1 only in the extracellular domain and represents the liganded receptor. Comparison between the two models not only allows us to explore commonalities and differences with comparative models of the nicotinic acetylcholine receptor, but also suggests possible protein sub-domain interactions with the GABA(A) receptor not previously addressed

    Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing.

    No full text
    Here we examined the gas-phase structures of two tetrameric membrane protein complexes by ion mobility mass spectrometry. The collision cross sections measured for the ion channel are in accord with a compact configuration of subunits, suggesting that the native-like structure can be preserved under the harsh activation conditions required to release it from the detergent micelle into the gas phase. We also found that the quaternary structure of the transporter, which has fewer transmembrane subunits than the ion channel, is less stable once stripped of detergents and bulk water. These results highlight the potential of ion mobility mass spectrometry for characterizing the overall topologies of membrane protein complexes and the structural changes associated with nucleotide, lipid, and drug binding

    A model of a transmembrane drug-efflux pump from Gram-negative bacteria.

    No full text
    In Gram-negative bacteria, drug resistance is due in part to the activity of transmembrane efflux-pumps, which are composed of three types of proteins. A representative pump from Escherichia coli is an assembly of the trimeric outer-membrane protein TolC, which is an allosteric channel, the trimeric inner-membrane proton-antiporter AcrB, and the periplasmic protein, AcrA. The pump displaces drugs vectorially from the bacterium using proton electrochemical force. Crystal structures are available for TolC and AcrB from E. coli, and for the AcrA homologue MexA from Pseudomonas aeruginosa. Based on homology modelling and molecular docking, we show how AcrA, AcrB and TolC might assemble to form a tripartite pump, and how allostery may occur during transport
    corecore