26 research outputs found
Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)
Abstract Fifty earthquakes that occurred in Hungary (central
part of the Pannonian basin) with local magnitude ML
ranging from 0.8 to 4.5 have been analyzed. The digital
seismograms used in this study were recorded by six permanent
broad-band stations and twenty short-period ones at
hypocentral distances between 10 and 327 km. The displacement
spectra for P- and SH-waves were analyzed according
to Brune’s source model. Observed spectra were corrected
for path-dependent attenuation effects using an independent
regional estimate of the quality factor QS. To correct spectra
for near-surface attenuation, the k parameterwas calculated,
obtaining it fromwaveforms recorded at short epicentral distances.
The values of the k parameter vary between 0.01 to
0.06 s with a mean of 0.03 s for P-waves and between 0.01
to 0.09 s with a mean of 0.04 s for SH-waves. After correction
for attenuation effects, spectral parameters (corner
frequency and low-frequency spectral level) were estimated
by a grid search algorithm. The obtained seismic moments
range from4.21×1011 to 3.41×1015 Nm (1.7≤Mw ≤4.3).
The source radii are between 125 and 1343 m. Stress drop
values vary between 0.14 and 32.4 bars with a logarithmic
mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear
relationship between local andmomentmagnitudes has been
established. The obtained scaling relations show slight evidence
of self-similarity violation. However, due to the high
scatter of our data, the existence of self-similarity cannot be
excluded
An approach to the detection of post-seismic structural damage based on image segmentation methods
\u3cp\u3eCrack detection is critical in ensuring basic structural security, however manual identification of cracks is time-consuming and is subject to the judgments of reviewers. This research presents a crack detection technique based on image processing. The digital image processing is divided into different phases and each of them follow techniques that improve the quality of the images. In the segmentation phase, images traits need to be highlighted. This document portrays the image segmentation of a set of digital photographs of cracks and crevices of the different structures of the buildings of the faculties of the University of Guayaquil. In this study, a function is developed using the computational tool, Matlab, to obtain results by submitting the images to the different segmentation techniques applied during the investigation, for which methods are proposed such as: The Canny transform, The Sobel Operator and the Prewitt Transform. With the obtained results, crack measurement is applied based on the manual selection of pixels in order to generate damage assessment.\u3c/p\u3
Volcanic Seismology
Recent developments in volcanic seismology include new techniques to improve earthquake locations that have changed clouds of earthquakes to lines (faults) for high-frequency events and small volumes for low-frequency (LF) events. Spatial mapping of the b-value shows regions of normal b and high b anomalies at depths of 3–4 and 7–10 km. Increases in b precede some eruptions. LF events and very-long-period (VLP) events have been recorded at many volcanoes, and models are becoming increasingly sophisticated. Deep long-period (LP) events are fairly common, but may represent several processes. Acoustic sensors have greatly improved the study of volcanic explosions. Volcanic tremor is stronger for fissure eruptions, phreatic eruptions, and higher gas contents. Path and site effects can be extreme at volcanoes. Seismicity at volcanoes is triggered by large earthquakes, although mechanisms are still uncertain. A number of volcanoes have significant deformation with very little seismicity. Tomography has benefited from improved techniques and better instrumental arrays