179 research outputs found
The IGNITE Pharmacogenetics Working Group: An Opportunity for Building Evidence with Pharmacogenetic Implementation in a Real‐World Setting
Virtual prototyping of a semi-active transfemoral prosthetic leg
This article presents a virtual prototyping study of a semi-active lower limb prosthesis to improve the functionality of an amputee during prosthesis–environment interaction for level ground walking. Articulated ankle–foot prosthesis and a single-axis semi-active prosthetic knee with active and passive operating modes were considered. Data for level ground walking were collected using a photogrammetric method in order to develop a base-line simulation model and with the hip kinematics input to verify the proposed design. The simulated results show that the semi-active lower limb prosthesis is able to move efficiently in passive mode, and the activation time of the knee actuator can be reduced by approximately 50%. Therefore, this semi-active system has the potential to reduce the energy consumption of the actuators required during level ground walking and requires less compensation from the amputee due to lower deviation of the vertical excursion of body centre of mass
Adaptive and maladaptive consequences of “matching habitat choice:” lessons from a rapidly-evolving butterfly metapopulation
Relationships between biased dispersal and local adaptation are currently debated. Here, I show how prior work on wild butterflies casts a novel light on this topic. “Preference” is defined as the set of likelihoods of accepting particular resources after encountering them. So defined, butterfly oviposition preferences are heritable habitat adaptations distinct from both habitat preference and biased dispersal, but influencing both processes. When a butterfly emigrates after its oviposition preference begins to reduce realized fecundity, the resulting biased dispersal is analogous to that occurring when a fish emigrates after its morphological habitat adaptations reduce its feeding rate. I illustrate preference-biased dispersal with examples from metapopulations of Melitaea cinxia and Euphydryas editha. E. editha were feeding on a well-defended host, Pedicularis, when humans created patches in which Pedicularis was killed and a less-defended host, Collinsia, was rendered phenologically available. Patch-specific natural selection favoured oviposition on Collinsia in logged (“clearing”) patches and on Pedicularis in undisturbed open forest. Quantitative variation in post-alighting oviposition preference was heritable, and evolved to be consistently different between patch types. This difference was driven more by biased dispersal than by spatial variation of natural selection. Insects developing on Collinsia in clearings retained adaptations to Pedicularis in clutch size, geotaxis and oviposition preference, forcing them to choose between emigrating in search of forest habitats with Pedicularis or staying and failing to find their preferred host. Insects that stayed suffered reduction of realized fecundity after delayed oviposition on Collinsia. Those that emigrated suffered even greater fitness penalty from consistently low offspring survival on Pedicularis. Paradoxically, most emigrants reduced both their own fitness and that of the recipient populations by dispersing from a benign natal habitat to which they were maladapted into a more demanding habitat to which they were well-adapted. “Matching habitat choice” reduced fitness when evolutionary lag rendered traditional cues unreliable in a changing environment
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
Classification tree analysis of second neoplasms in survivors of childhood cancer
BACKGROUND: Reports on childhood cancer survivors estimated cumulative probability of developing secondary neoplasms vary from 3,3% to 25% at 25 years from diagnosis, and the risk of developing another cancer to several times greater than in the general population. METHODS: In our retrospective study, we have used the classification tree multivariate method on a group of 849 first cancer survivors, to identify childhood cancer patients with the greatest risk for development of secondary neoplasms. RESULTS: In observed group of patients, 34 develop secondary neoplasm after treatment of primary cancer. Analysis of parameters present at the treatment of first cancer, exposed two groups of patients at the special risk for secondary neoplasm. First are female patients treated for Hodgkin's disease at the age between 10 and 15 years, whose treatment included radiotherapy. Second group at special risk were male patients with acute lymphoblastic leukemia who were treated at the age between 4,6 and 6,6 years of age. CONCLUSION: The risk groups identified in our study are similar to the results of studies that used more conventional approaches. Usefulness of our approach in study of occurrence of second neoplasms should be confirmed in larger sample study, but user friendly presentation of results makes it attractive for further studies
Ulnar-sided wrist pain. Part I: anatomy and physical examination
Ulnar-sided wrist pain is a common complaint, and it presents a diagnostic challenge for hand surgeons and radiologists. The complex anatomy of this region, combined with the small size of structures and subtle imaging findings, compound this problem. A thorough understanding of ulnar-sided wrist anatomy and a systematic clinical examination of this region are essential in arriving at an accurate diagnosis. In part I of this review, ulnar-sided wrist anatomy and clinical examination are discussed for a more comprehensive understanding of ulnar-sided wrist pain
HIV Replication Enhances Production of Free Fatty Acids, Low Density Lipoproteins and Many Key Proteins Involved in Lipid Metabolism: A Proteomics Study
BACKGROUND: HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. RESULTS: Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. CONCLUSIONS: We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002-0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways
Fatores associados à vulnerabilidade de idosos vivendo com HIV/AIDS em Belo Horizonte (MG), Brasil
Non-alcoholic fatty liver disease (NAFLD) in different populations: A clinical and epidemiological study – sample of São José do Rio Preto
- …
