78 research outputs found

    Solar cycle variation in solar f-mode frequencies and radius

    Get PDF
    Using data from the Global Oscillation Network Group (GONG) covering the period from 1995 to 1998, we study the change with solar activity in solar f-mode frequencies. The results are compared with similar changes detected from the Michelson Doppler Imager (MDI) data. We find variations in f-mode frequencies which are correlated with solar activity indices. If these changes are due to variation in solar radius then the implications are that the solar radius decreases by about 5 km from minimum to maximum activity.Comment: To appear in Solar Physic

    Double-Mode Stellar Pulsations

    Full text link
    The status of the hydrodynamical modelling of nonlinear multi-mode stellar pulsations is discussed. The hydrodynamical modelling of steady double-mode (DM) pulsations has been a long-standing quest that is finally being concluded. Recent progress has been made thanks to the introduction of turbulent convection in the numerical hydrodynamical codes which provide detailed results for individual models. An overview of the modal selection problem in the HR diagram can be obtained in the form of bifurcation diagrams with the help of simple nonresonant amplitude equations that capture the DM phenomenon.Comment: 34 pages, to appear as a chapter in Nonlinear Stellar Pulsation in the Astrophysics and Space Science Library (ASSL), Editors: M. Takeuti & D. Sasselov (prints double column with pstops '2:[email protected](22.0cm,-2cm)[email protected](22.0cm,11.0cm)' in.ps out.ps

    Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes

    Get PDF
    We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model grants the existence of turbulence at any gradient Richardson number, Ri. Instead of its critical value separating - as usually assumed - the turbulent and the laminar regimes, it reveals a transition interval, 0.1< Ri <1, which separates two regimes of essentially different nature but both turbulent: strong turbulence at Ri<<1; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at Ri>1. Predictions from this model are consistent with available data from atmospheric and lab experiments, direct numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised versio

    Globular Cluster Distance Determinations

    Get PDF
    The present status of the distance scale to Galactic globular clusters is reviewed. Six distance determination techniques which are deemed to be most reliable are discussed in depth. These different techniques are used to calibrate the absolute magnitude of the RR Lyrae stars. The various calibrations fall into three groups. Main sequence fitting using Hipparcos parallaxes, theoretical HB models and the RR Lyrae in the LMC all favor a bright calibration, implying a `long' globular cluster distance scale. White dwarf fitting and the astrometric distances yield a somewhat fainter RR Lyrae calibration, while the statistical parallax solution yields faint RR Lyrae stars implying a `short' distance scale to globular clusters. Various secondary distance indicators discussed all favor the long distance scale. The `long' and `short' distance scales differ by (0.31+/-0.16) mag. Averaging together all of the different distance determinations yields Mv(RR) = (0.23+/-0.04)([Fe/H] + 1.6) + (0.56+/-0.12) mag.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in pres

    Analysis of stellar spectra with 3D and NLTE models

    Full text link
    Models of radiation transport in stellar atmospheres are the hinge of modern astrophysics. Our knowledge of stars, stellar populations, and galaxies is only as good as the theoretical models, which are used for the interpretation of their observed spectra, photometric magnitudes, and spectral energy distributions. I describe recent advances in the field of stellar atmosphere modelling for late-type stars. Various aspects of radiation transport with 1D hydrostatic, LTE, NLTE, and 3D radiative-hydrodynamical models are briefly reviewed.Comment: 21 pages, accepted for publication as a chapter in "Determination of Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Pulsating Stellar Atmospheres

    Get PDF
    We review the basic concepts, the present state of theoretical models, and the future prospects for theory and observations of pulsating stellar atmospheres. Our emphasis is on radially pulsating cool stars, which dynamic atmospheres provide a general example for the differences with standard static model atmospheres.Comment: 9 pages, 2 figs, LaTex, in Proc. of IAU Symp 189, "Fundamental Stellar Properties...", eds. T. R. Bedding, A. J. Booth and J. Davis, Kluwer, p.253, 199
    corecore