150 research outputs found

    The color excess of quasars with intervening DLA systems- Analysis of the SDSS data release five

    Full text link
    We analyzed the spectroscopic and photometric database of the 5th data release of the Sloan Digital Sky Survey (SDSS) to search for evidence of the quasar reddening produced by dust embedded in intervening damped Ly alpha (DLA) systems. From a list of 5164 quasars in the interval of emission redshift 2.25 /= 4, we built up an "absorption sample" of 248 QSOs with a single DLA system in the interval of absorption redshift 2.2 < z_a </= 3.5 and a "pool" of 1959 control QSOs without DLA systems or strong metal systems. For each QSO of the absorption sample we extracted from the pool a subset of control QSOs that are closest in redshift and magnitude. The mean color of this subset was used as a zero point to measure the "deviation from the mean color" of individual DLA-QSOs, Delta_i. The colors were measured using "BEST" ugriz SDSS imaging data. The mean color excess of the absorption sample, , was estimated by averaging the individual color deviations Delta_i. We find = 27 +/- 9 x 10**(-3) mag and = 54 +/- 12 x 10**(-3) mag. These values are representative of the reddening of DLA systems at z_a ~ 2.7 in SDSS QSOs with limiting magnitude r =/~ 20.2. The detection of the mean reddening is confirmed by several statistical tests. Analysis of the results suggests an origin of the reddening in dust embedded in the DLA systems, with an SMC-type extinction curve. By converting the reddening into rest-frame extinction, we derive a mean dust-to-gas ratio ~ 2 to 4 x 10**(-23) mag cm^2. This value is ~ -1.25 dex lower than the mean dust-to-gas ratio of the Milky Way, in line with the lower level of metallicity in the present DLA sample.Comment: Accepted for publication on Astronomy & Astrophysics, 17 pages, 10 figure

    Metal abundances at z<1.5: new measurements in sub-Damped Lyman-alpha Absorbers

    Full text link
    Damped Lyman-alpha systems (DLAs) and sub-DLAs seen toward background quasars provide the most detailed probes of elemental abundances. Somewhat paradoxically these measurements are more difficult at lower redshifts due to the atmospheric cut-off, and so a few years ago our group began a programme to study abundances at z < 1.5 in quasar absorbers. In this paper, we present new UVES observations of six additional quasar absorption line systems at z < 1.5, five of which are sub-DLAs. We find solar or above solar metallicity, as measured by the abundance of zinc, assumed not to be affected by dust, in two sub-DLAs: one, towards Q0138-0005 with [Zn/H]=+0.28 +/- 0.16; the other towards Q2335+1501 with [Zn/H]=+0.07 +/- 0.34. Relatively high metallicity was observed in another system: Q0123-0058 with [Zn/H]=-0.45 +/- 0.20. Only for the one DLA in our sample, in Q0449-1645, do we find a low metallicity, [Zn/H]=-0.96 +/- 0.08. We also note that in some of these systems large relative abundance variations from component to component are observed in Si, Mn, Cr and Zn.Comment: 7 figures and 10 tables. Accepted for publication in MNRA
    • …
    corecore