8 research outputs found

    Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model

    Get PDF
    Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches

    Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 205-219, doi:10.1007/s10646-006-0122-0.Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly concentrated on vertebrates, with significantly less attention paid to understanding potential endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all known animal species and are critical to ecosystem structure and function, it remains essential to close this gap in knowledge and research. The lack of progress regarding endocrine disruption in invertebrates is still largely due to: (1) our ignorance of mode-of-action, physiological control, and hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3) the irrelevance to most invertebrates of the proposed activity-based biological indicators for endocrine disruptor exposure (androgen, estrogen and thyroid); (4) limited field studies. Past and ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have aimed at addressing some of these issues. The present review serves as an update to a previous publication on the use of mysid shrimp for the evaluation of endocrine disruptors (Verslycke et al., 2004a). It summarizes recent investigative efforts that have significantly advanced our understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and transgeneration standard test development using the mysid model.Supported by a Fellowship of the Belgian American Educational Foundation

    Uterine-preserving operative therapy of uterus myomatosus

    No full text

    A ride through the epigenetic landscape: aging reversal by reprogramming

    No full text

    Regulatory Non-coding RNAs in Atherosclerosis

    No full text
    corecore