66 research outputs found

    Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats

    Get PDF
    Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states

    MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation

    Get PDF
    Stem cells are unspecialized/undifferentiated cells that exist in embryos and adult tissues or can be converted from somatic differentiated cells. Use of stem cells for tissue regeneration and tissue engineering has been a cornerstone of the regenerative medicine. Stem cells are also believed to exist in cancer tissues, namely cancer stem cells (CSCs). Growing evidence suggests that CSCs are the culprit of cancer dormancy, progression and recurrence, and thus have recently received great attention. MicroRNAs (miRNAs) are a group of short, non-coding RNAs that regulate expression of a wide range of genes at a post-transcriptional manner. They are emerging as key regulators of stem cell behaviors. This mini review summarizes the basic biogenesis and mode of actions of miRNAs, recent progress and discoveries of miRNAs in cellular reprogramming, stem cell differentiation and cellular communication, as well as miRNAs in CSCs. Some potential of miRNAs in future biomedical applications and research pertaining to stem cells are briefly discussed

    Mutation analysis of COX18 in 29 patients with isolated cytochrome c oxidase deficiency.

    No full text
    International audienceIsolated cytochrome c oxidase (COX) deficiency (MIM#220110) is a relatively common biochemical finding in pediatric patients with mitochondrial disorder. It has been associated with different clinical phenotypes ranging from isolated myopathy to severe multisystem disorder. It is a genetically heterogeneous trait, and the most frequent genetic defects affect SURF1 and SCO2, two genes required for COX assembly. However, a significant proportion of patients lacks mutation in these genes and in other known genes that require COX biogenesis. COX18 is a novel COX assembly gene required for membrane insertion of the C-terminal portion of COX subunit II. We have studied 29 pediatric patients with isolated COX deficiency in the skeletal muscle associated with different clinical phenotypes. Mutations in SURF1, SCO2, SCO1, COX10, COX15 and in mitochondrial DNA, had been ruled out earlier. The COX18 gene was analyzed using a PCR-single-stranded conformation polymorphism (PCR-SSCP) protocol, and in 15 patients, the analysis was repeated by direct sequencing. No pathogenic mutations were detected in our cohort of patients indicating that COX18 mutations may be very rare or associated with other phenotypes than isolated COX deficiency in infancy

    An overview of free trade agreements in the Asia-Pacific region with a particular focus on intellectual property

    Full text link
    This chapter provides an overview of Free Trade Agreements (FTAs) in the Asia-Pacific region. It examines the multiple interpretations of the ‘Asia-Pacific’ and asks about the usefulness of this concept as a focus of comparison. It explains the political and economic background of concluded agreements, the negotiations in progress and the formation of regional clusters of FTAs, and also shows the enormous differences in IP content in the various agreements. With the exception of Japan, Asia-Pacific countries appear as relatively reluctant converts to higher IP standards. Even the industrialized economies of the region that had to increase their IP standards after agreements with the US, EU or Japan do not necessarily impose the same standards on regional neighbours. Instead, ‘soft diplomacy’ in IP matters is important to countries in the region, as is new subject matter for intellectual property protection such as traditional knowledge and traditional cultural expressions
    corecore