103 research outputs found

    Are anti-fouling effects in coralline algae species specific?

    Get PDF
    As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle) e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em discos de massa epóxi foram fíxos na rocha. Após um mês as algas epífitas foram identificadas e sua massa seca quantificada. Lithophyllum não inibiu o crescimento das epífitas, em contraste Spongites e outra coralinácea indeterminada inibiram o crescimento de Enteromorpha spp., Ulva fasciata e Hincksia mitchelliae. Colpomenia sinuosa esteve sempre ausente sobre as crostas vivas, porém presente nos controles. Resultados demonstram que a relação epífita-hospedeiro depende das espécies que estejam interagindo. O desprendimento de células superficiais das crostas coralináceas aponta para um possível efeito físico anti-incrustante, não se excluindo o químico.The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls) and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected

    Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll

    Get PDF
    As algas calcárias incrustantes exercem um papel fundamental na construção de recifes ao redor do mundo. Neste trabalho os objetivos foram: identificar e estimar a abundância da alga calcária incrustante dominante nas partes rasas do recife, verificando suas taxas de colonização, crescimento e produtividade. Crostas de diferentes habitats foram estudadas em locais a barlavento e sotavento. Discos feitos com massa epóxi foram fixados na superfície do recife para acompanhar a colonização das algas calcárias e discos contendo a alga calcária dominante foram fixados em diferentes habitats para medir o crescimento de suas margens. Os experimentos de produtividade seguiram o método de frascos claros e escuros para leitura de oxigênio dissolvido. Porolithon pachydermum foi confirmado como a espécie de alga calcária incrustante dominante no recife do Atol das Rocas. O local abrigado apresentou maior crescimento da forma plana e típica de crista de P. pachydermum em relação ao exposto. Esta forma também teve um crescimento maior na crista recifal (0,05 mm.dia-1) do que no platô (0,01 mm.dia-1). A forma protuberante e típica de fendas de P. pachydermum apresentou tendência, não significativa, para maior crescimento na crista e poça em relação ao platô. A colonização apresentou baixas coberturas quando comparada a outros estudos recifais. P. pachydermum é uma planta produtiva tanto em ambientes ensolarados como sombreados.Crustose coralline algae play a fundamental role in reef construction all over the world. The aims fo this study were to identify and estimate the abundance of the dominant crustose coralline algae in shallow reef habitats, measuring their colonization, growth rates and productivity. Crusts sampled from different habitats were collected on leeward and windward reefs. Discs made of epoxy putty were fixed on the reef surface to follow coralline colonization and discs containing the dominant coralline algae were fixed on different habitats to measure the crusts' marginal growth. The primary production experiments followed the clear and dark bottle method for dissolved oxygen reading. Porolithon pachydermum was confirmed as the dominant crustose coralline alga on the Rocas Atoll. The non-cryptic flat form of P. pachydermum showed a faster growth rate on the leeward than on the windward reef. This form also had a faster growth rate on the reef crest (0.05 mm.day-1) than on the reef flat (0.01 mm.day-1). The cryptic protuberant form showed a trend, though not significant, towards a faster growth rate on the reef crest and in tidal pools than on the reef flat. Colonization was, in general, very slow as compared to that presented by other reef studies. P. pachydermum was a productive crust both in non-cryptic and cryptic habitats

    Thermal Effects on Photon-Induced Quantum Transport

    Full text link
    We theoretically investigate laser induced quantum transport in a two-level quantum dot attached to electric contacts. Our approach, based on nonequilibrium Green function technique, allows to include thermal effects on the photon-induced quantum transport and excitonic coherent dynamics. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupations as a function of time. The characteristic coherent Rabi oscillations are found in both occupations and photocurrent, with two distinct sources of decoherence: incoherent tunneling and thermal fluctuations. In particular, for increasing temperature the dot becomes more thermally occupied which shrinks the amplitude of the Rabi oscillations, due to Pauli blockade. Finally, due to the interplay between photon and thermal induced electron populations, the photocurrent can switch sign as time evolves and its stationary value can be maximized by tunning the laser intensity.Comment: 5 pages, 4 figure

    Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities

    Full text link
    We experimentally and theoretically investigate dephasing of zero dimensional microcavity polaritons in electrically tunable single dot photonic crystal nanocavities. Such devices allow us to alter the dot-cavity detuning in-situ and to directly probe the influence on the emission spectrum of varying the incoherent excitation level and the lattice temperature. By comparing our results with theory we obtain the polariton dephasing rate and clarify its dependence on optical excitation power and lattice temperature. For low excitation levels we observe a linear temperature dependence, indicative of phonon mediated polariton dephasing. At higher excitation levels, excitation induced dephasing is observed due to coupling to the solid-state environment. The results provide new information on coherence properties of quantum dot microcavity polaritons.Comment: Figure 2, panel (b) changed to logarithmic + linear scal

    Generation of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED

    Full text link
    We present a way to engineer an effective anti-Jaynes-Cumming and a Jaynes-Cumming interaction between an atomic system and a single cavity mode and show how to employ it in reservoir engineering processes. To construct the effective Hamiltonian, we analyse considered the interaction of an atomic system in a \{Lambda} configuration, driven by classical fields, with a single cavity mode. With this interaction, we firstly show how to generate a decoherence-free displaced squeezed state for the cavity field. In our scheme, an atomic beam works as a reservoir for the radiation field trapped inside the cavity, as employed recently by S. Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)] to generate an Einstein-Podolsky-Rosen entangled radiation state in high-Q resonators. In our scheme, all the atoms have to be prepared in the ground state and, as in the cited article, neither atomic detection nor precise interaction times between the atoms and the cavity mode are required. From this same interaction, we can also generate an ideal squeezed reservoir for atomic systems. For this purpose we have to assume, besides the engineered atom-field interaction, a strong decay of the cavity field (i.e., the cavity decay must be much stronger than the effective atom-field coupling). With this scheme, some interesting effects in the dynamics of an atom in a squeezed reservoir could be tested

    Proposal to produce long-lived mesoscopic superpositions through an atom-driven field interaction

    Full text link
    We present a proposal for the production of longer-lived mesoscopic superpositions which relies on two requirements: parametric amplification and squeezed vacuum reservoir for cavity-field states. Our proposal involves the interaction of a two-level atom with a cavity field which is simultaneously subjected to amplification processes.Comment: 12 pages, title changed, text improved and refences adde

    Nonadiabatic geometric phase induced by a counterpart of the Stark shift

    Full text link
    We analyse the geometric phase due to the Stark shift in a system composed of a bosonic field, driven by time-dependent linear amplification, interacting dispersively with a two-level (fermionic) system. We show that a geometric phase factor in the joint state of the system, which depends on the fermionic state (resulting form the Stark shift), is introduced by the amplification process. A clear geometrical interpretation of this phenomenon is provided. We also show how to measure this effect in an interferometric experiment and to generate geometric "Schrodinger cat"-like states. Finally, considering the currently available technology, we discuss a feasible scheme to control and measure such geometric phases in the context of cavity quantum electrodynamics
    • …
    corecore