We experimentally and theoretically investigate dephasing of zero dimensional
microcavity polaritons in electrically tunable single dot photonic crystal
nanocavities. Such devices allow us to alter the dot-cavity detuning in-situ
and to directly probe the influence on the emission spectrum of varying the
incoherent excitation level and the lattice temperature. By comparing our
results with theory we obtain the polariton dephasing rate and clarify its
dependence on optical excitation power and lattice temperature. For low
excitation levels we observe a linear temperature dependence, indicative of
phonon mediated polariton dephasing. At higher excitation levels, excitation
induced dephasing is observed due to coupling to the solid-state environment.
The results provide new information on coherence properties of quantum dot
microcavity polaritons.Comment: Figure 2, panel (b) changed to logarithmic + linear scal