4 research outputs found
Aproximaci贸n a un modelo para analizar la tecnolog铆a diagn贸stica en las diferentes fases de su ciclo de vida soportado en un sistema de gesti贸n por procesos
The design of an approach to a model that aims to the performance analysis of diagnostic technologies in every phase of their life cycle inside a health institution is presented. The characterization of the life cycle phases and the description of the processes related to technology management, allowed to identify different parameters for assess the use, maintenance, financial resources and the impact of the medical technology inside the clinical service. The integration of these parameters into a model provides an estimation of the current state of the technology, the estimation of the years of optimal use within the institution and the necessary information to propose an appropriate replacement. The model used uses a discrete-time Markov chain; by defining different endpoints and obtaining the corresponding transition probabilities between states, it establishes the functional status of the technology and a prediction of the time that the equipment remains in each period. The Clinical, financial and technological Information of the diagnostic equipment analyzed was obtained from the application of a series of surveys to four institutions belonging to the health systems of Mexico and Colombia. As a first iteration of the model 11 conventional X-ray and 4 tomography units were considered. The results of the model show a strong correlation with the current status of the equipment installed in the radiology services surveyed. Since the information obtained by the model is documented and organized, it can be considered reliable, in other words, it not dependent on a subjective point of view and timely because it has the elements required in advance contending with situations resulting from use of technology. Also the system provides the necessary tools to support technology management processes, as well as decisions-making-, and the optimal location of the financial resources in the hospital. In addition, it contributes to the development of strategies for the medical technology replacement process in accordance with the national and international standards.En este proyecto, se dise帽a una aproximaci贸n a un modelo que permite el an谩lisis del desempe帽o de la tecnolog铆a diagn贸stica en cada fase de su ciclo de vida dentro una instituci贸n de salud. La caracterizaci贸n de las fases del ciclo de vida y la descripci贸n de los procesos relacionados con la gesti贸n tecnol贸gica, ayudaron a identificar diferentes par谩metros que permitieron valorar el uso, la conservaci贸n, los recursos econ贸micos y el impacto de la tecnolog铆a m茅dica dentro del servicio cl铆nico. La integraci贸n de estos par谩metros en un modelo proporciona una estimaci贸n del estado actual de la tecnolog铆a, la proyecci贸n de los a帽os de uso 贸ptimo dentro de la instituci贸n y la informaci贸n necesaria para proponer un reemplazo oportuno. El modelo empleado corresponde a una cadena de Markov de tiempo discreto que, mediante la definici贸n de diferentes criterios de valoraci贸n y la obtenci贸n de las correspondiente probabilidades de transici贸n entre los estados propuestos, permite establecer el estado funcional de la tecnolog铆a y predecir los tiempos en que el equipo permanece en cada uno ellos. La informaci贸n cl铆nica, econ贸mica y tecnol贸gica de los equipos de diagn贸stico analizados se obtuvo a partir de la aplicaci贸n de una serie de encuestas a cuatro instituciones pertenecientes a los sistemas de salud de M茅xico y Colombia. Como la primera iteraci贸n del modelo se consideraron 11 equipos de rayos X convencional y 4 equipos de tomograf铆a computada. Los resultados obtenidos al aplicar el modelo revelan una fuerte correlaci贸n con la percepci贸n que se tiene del uso de los equipos por parte de los distintos entes involucrados. Dado que la informaci贸n obtenida por parte del modelo queda documentada de manera organizada, se puede considerar que 茅sta es confiable, es decir, que no depende de un punto de vista subjetivo, y oportuna debido a que se cuenta con los elementos necesarios para contender de manera anticipada con las situaciones derivadas del uso de la tecnolog铆a. Asimismo el sistema suministra las herramientas suficientes para dar soporte a los procesos de gesti贸n tecnol贸gica, as铆 como a la toma de decisiones, y la optimizaci贸n de los recursos financieros y tecnol贸gicos del hospital. Adem谩s, contribuye al desarrollo de estrategias para el reemplazo oportuno del equipamiento y est茅 acorde con la normatividad nacional e internacional
Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model
Recently, intelligent video surveillance applications have become essential in public security by the use of computer vision technologies to investigate and understand long video streams. Anomaly detection and classification are considered a major element of intelligent video surveillance. The aim of anomaly detection is to automatically determine the existence of abnormalities in a short time period. Deep reinforcement learning (DRL) techniques can be employed for anomaly detection, which integrates the concepts of reinforcement learning and deep learning enabling the artificial agents in learning the knowledge and experience from actual data directly. With this motivation, this paper presents an Intelligent Video Anomaly Detection and Classification using Faster RCNN with Deep Reinforcement Learning Model, called IVADC-FDRL model. The presented IVADC-FDRL model operates on two major stages namely anomaly detection and classification. Firstly, Faster RCNN model is applied as an object detector with Residual Network as a baseline model, which detects the anomalies as objects. Besides, deep Q-learning (DQL) based DRL model is employed for the classification of detected anomalies. In order to validate the effective anomaly detection and classification performance of the IVADC-FDRL model, an extensive set of experimentations were carried out on the benchmark UCSD anomaly dataset. The experimental results showcased the better performance of the IVADC-FDRL model over the other compared methods with the maximum accuracy of 98.50% and 94.80% on the applied Test004 and Test007 dataset respectively