91 research outputs found
Feeding dendritic cells with tumor antigens: self-service buffet or à la carte?
Adoptive transfer of autologous dendritic cells (DC) presenting tumor-associated antigens initiate and sustain an immune response which eradicate murine malignancies. Based on these observations, several clinical trials are in progress testing safety and efficacy with encouraging preliminary reports. In these approaches, ex vivo incubation of DC with a source of tumor antigens is required to load the relevant antigenic epitopes on the adequate antigen presenting molecules. Recent data show that in some instances exogenous DC artificially injected into malignant tissue or endogenous DC attracted to the tumor nodule by means of gene transfer of GM-CSF and CD40L into malignant cells result in efficacious antitumor immunity. In the case of intratumoral injection of DC the procedure is curative only if DC had been genetically engineered to produce IL-12, IL-6 or to express CD40L. Evidence has been obtained showing that intratumoral DC can capture and process tumor antigens to be presented to T-lymphocytes. Although the exact mechanisms of tumor antigen acquisition by DC are still unclear, available data suggest a role for heat shock proteins released from dying malignant cells and for the internalization of tumor-derived apoptotic bodies. Roles for tumor necrosis versus apoptosis are discussed in light of the 'danger theory'
Measles virus causes immunogenic cell death in human melanoma
Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host anti-tumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response
Ad-CD40L mobilizes CD4 T cells for the treatment of brainstem tumors
Diffuse Midline Glioma, formerly Diffuse Intrinsic Pontine Glioma (DIPG), is the deadliest pediatric brainstem tumor with median survival of less than one year. Here, we investigated 1) whether direct delivery of adenovirus expressing CD40L (Ad-CD40L) to brainstem tumors would induce immune-mediated tumor clearance and, 2) if so, whether therapy would be associated with a manageable toxicity due to immune-mediated inflammation in the brainstem.
Methods
Syngeneic gliomas in the brainstems of immune competent mice were treated with Ad-CD40L and survival, toxicity and immune profiles determined. A clinically translatable vector, whose replication would be tightly restricted to tumor cells, rAd-Δ24-CD40L, was tested in human patient-derived Diffuse Midline Gliomas and immunocompetent models.
Results
Expression of Ad-CD40L restricted to brainstem gliomas by pre-infection induced complete rejection, associated with immune cell infiltration, of which CD4+ T cells were critical for therapy. Direct intra-tumoral injection of Ad-CD40L into established brainstem tumors improved survival and induced some complete cures but with some acute toxicity. RNA-seq analysis showed that Ad-CD40L therapy induced neuroinflammatory immune responses associated with IL-6, IL-1β and TNF-α. Therefore, to generate a vector whose replication, and transgene expression, would be tightly restricted to tumor cells, we constructed rAd-Δ24-CD40L, the backbone of which has already entered clinical trials for Diffuse Midline Glioma. Direct intra-tumoral injection of rAd-Δ24-CD40L, with systemic blockade of IL-6 and IL-1β, generated significant numbers of cures with readily manageable toxicity.
Conclusions
Virus-mediated delivery of CD40L has the potential to be effective in treating Diffuse Midline Gliomas without obligatory neuroinflammation-associated toxicity
Ad5NULL-A20 - a tropism-modified, αvβ6 integrin-selective oncolytic adenovirus for epithelial ovarian cancer therapies
Purpose: Virotherapies are maturing in the clinical setting. Adenoviruses (Ad) are excellent vectors for manipulability and tolerance of transgenes. Poor tumour-selectivity, off-target sequestration and immune inactivation hamper clinical efficacy. We sought to completely redesign Ad5 into a refined, tumour selective virotherapy targeted to αvβ6 integrin, which is expressed in a range of aggressively transformed epithelial cancers but non-detectable in healthy tissues. Experimental Design: Ad5NULL-A20 harbours mutations in each major capsid protein to preclude uptake via all native pathways. Tumour-tropism via αvβ6-targeting was achieved by genetic insertion of A20 peptide (NAVPNLRGDLQVLAQKVART) within the fiber knob protein. The vector's selectivity in vitro and in vivo was assessed. Results: The tropism-ablating triple mutation completely blocked all native cell entry pathways of Ad5NULL-A20 via coxsackie and adenovirus receptor (CAR), αvβ3/5 integrins and coagulation factor 10 (FX). Ad5NULL-A20 efficiently and selectively transduced αvβ6+ cell lines and primary clinical ascites-derived EOC ex vivo, including in the presence of pre-existing anti-Ad5 immunity. In vivo biodistribution of Ad5NULL-A20 following systemic delivery in non-tumour-bearing mice was significantly reduced in all off-target organs, including a remarkable 107-fold reduced genome accumulation in the liver compared to Ad5. Tumour uptake, transgene expression and efficacy were confirmed in a peritoneal SKOV3 xenograft model of human EOC, where oncolytic Ad5NULL-A20-treated animals demonstrated significantly improved survival compared to those treated with oncolytic Ad5. Conclusions: Oncolytic Ad5NULL-A20 virotherapies represent an excellent vector for local and systemic targeting of αvβ6-over-expressing cancers, and exciting platforms for tumour selective over-expression of therapeutic anti-cancer modalities, including immune checkpoint inhibitors
Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer
Reovirus type 3 Dearing (T3D) has demonstrated oncolytic activity in vitro, in in vivo murine models and in early clinical trials. However the true potential of oncolytic viruses may only be realized fully in combination with other modalities such as chemotherapy, targeted therapy and radiotherapy. In this study, we examine the oncolytic activity of reovirus T3D and chemotherapeutic agents against human prostate cancer cell lines, with particular focus on the highly metastatic cell line PC3 and the chemotherapeutic agent docetaxel. Docetaxel is the standard of care for metastatic prostate cancer and acts by disrupting the normal process of microtubule assembly and disassembly. Reoviruses have been shown to associate with microtubules and may require this association for efficient viral replication
Reovirus exerts potent oncolytic effects in head and neck cancer cell lines that are independent of signalling in the EGFR pathway
Background: reovirus exploits aberrant signalling downstream of Ras to mediate tumor-specific oncolysis. Since ~90% squamous cell carcinomas of the head and neck (SCCHN) over-express EGFR and SCCHN cell lines are sensitive to oncolytic reovirus, we conducted a detailed analysis of the effects of reovirus in 15 head and neck cancer cell lines. Both pre- and post-entry events were studied in an attempt to define biomarkers predictive of sensitivity/resistance to reovirus. In particular, we analysed the role of EGFR/Ras signalling in determining virus-mediated cytotoxicity in SCCHN. Methods: to test whether EGFR pathway activity was predictive of increased sensitivity to reovirus, correlative analyses between reoviral IC50 by MTT assay and EGFR levels by western blot and FACS were conducted. Inhibition or stimulation of EGFR signalling were analysed for their effect on reoviral oncolysis by MTT assay, and viral growth by TCID50 assay. We next analysed the effects of inhibiting signalling downstream of Ras, by specific inhibitors of p38MAPK, PI3-K or MEK, on reoviral killing examined by MTT assay. The role of PKR in reoviral killing was also determined by blockade of PKR using 2-aminopurine and assaying for cell survival by MTT assay. The apoptotic response of SCCHN to reovirus was examined by western blot analysis of caspase 3 cleavage. Results: correlative analyses between reoviral sensitivity and EGFR levels revealed no association. Intermediate sub-viral and core particles showed the same infectivity/cytotoxicity as intact reovirus. Therefore, sensitivity was not determined by cell entry. In 4 cell lines, oncolysis and viral growth were both unaffected by inhibition or stimulation of EGFR signalling. Inhibition of signalling downstream of Ras did not abrogate reoviral oncolysis and, in addition, modulation of PKR using 2-aminopurine did not alter reovirus sensitivity in resistant cell lines. Caspase 3 cleavage was not detected in infected cells and oncolysis was observed in pan-caspase inhibited cells. Conclusions: in summary, reovirus is potently oncolytic in a broad panel of SCCHN cell lines. Attempts to define sensitivity/resistance by analysis of the EGFR/Ras/MAPK pathway have failed to provide a clear predictive biomarker of response. Further analysis of material from in vitro and clinical studies is ongoing in an attempt to shed further light on this issue
A phase I oncolytic virus trial with vesicular stomatitis virus expressing human interferon beta and tyrosinase related protein 1 administered intratumorally and intravenously in uveal melanoma: safety, efficacy, and T cell responses
IntroductionMetastatic uveal melanoma (MUM) has a poor prognosis and treatment options are limited. These patients do not typically experience durable responses to immune checkpoint inhibitors (ICIs). Oncolytic viruses (OV) represent a novel approach to immunotherapy for patients with MUM.MethodsWe developed an OV with a Vesicular Stomatitis Virus (VSV) vector modified to express interferon-beta (IFN-β) and Tyrosinase Related Protein 1 (TYRP1) (VSV-IFNβ-TYRP1), and conducted a Phase 1 clinical trial with a 3 + 3 design in patients with MUM. VSV-IFNβ-TYRP1 was injected into a liver metastasis, then administered on the same day as a single intravenous (IV) infusion. The primary objective was safety. Efficacy was a secondary objective.Results12 patients with previously treated MUM were enrolled. Median follow up was 19.1 months. 4 dose levels (DLs) were evaluated. One patient at DL4 experienced dose limiting toxicities (DLTs), including decreased platelet count (grade 3), increased aspartate aminotransferase (AST), and cytokine release syndrome (CRS). 4 patients had stable disease (SD) and 8 patients had progressive disease (PD). Interferon gamma (IFNγ) ELIspot data showed that more patients developed a T cell response to virus encoded TYRP1 at higher DLs, and a subset of patients also had a response to other melanoma antigens, including gp100, suggesting epitope spreading. 3 of the patients who responded to additional melanoma antigens were next treated with ICIs, and 2 of these patients experienced durable responses.DiscussionOur study found that VSV-IFNβ -TYRP1 can be safely administered via intratumoral (IT) and IV routes in a previously treated population of patients with MUM. Although there were no clear objective radiographic responses to VSV-IFNβ-TYRP1, dose-dependent immunogenicity to TYRP1 and other melanoma antigens was seen
Classification of current anticancer immunotherapies
During the past decades, anticancer immunotherapy has evolved from a promising
therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are
now approved by the US Food and Drug Administration and the European Medicines
Agency for use in cancer patients, and many others are being investigated as standalone
therapeutic interventions or combined with conventional treatments in clinical
studies. Immunotherapies may be subdivided into “passive” and “active” based on
their ability to engage the host immune system against cancer. Since the anticancer
activity of most passive immunotherapeutics (including tumor-targeting monoclonal
antibodies) also relies on the host immune system, this classification does not properly
reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer
immunotherapeutics can be classified according to their antigen specificity. While some
immunotherapies specifically target one (or a few) defined tumor-associated antigen(s),
others operate in a relatively non-specific manner and boost natural or therapy-elicited
anticancer immune responses of unknown and often broad specificity. Here, we propose
a critical, integrated classification of anticancer immunotherapies and discuss the clinical
relevance of these approaches
- …