21 research outputs found

    How should we be using biomarkers in trials of disease modification in Parkinson’s disease?

    Get PDF
    The recent validation of the alpha synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson’s disease has formed the backbone for a proposed staging system for incorporation in Parkinson’s disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson’s disease patients into trials (as distinct from patients with non- Parkinson’s disease parkinsonism or non- Parkinson’s disease tremors). There remain however further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson’s disease, namely: optimising the distinction between different alpha synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; as sensitive means of confirming target engagement; and in the early prediction of longer-term clinical benefit. For example; levels of cerebrospinal fluid proteins such as the lysosomal enzyme ß-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer disease like pathology (detectable through cerebrospinal fluid levels of Amyloid Beta-42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline of Parkinson’s disease even in its later stages. The exploitation of additional biomarkers to the alpha synuclein seed amplification assay will therefore greatly add to our ability to plan trials and assess disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson’s disease. However, correlation with clinical progression does not necessarily equate to causation and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson’s disease

    Validation of a comorbidity questionnaire in patients with neurological disorders

    Get PDF
    Rational: Several tools exist to assess comorbidities in neurological disorders, the most widely used being the Charlson Comorbidity Index (CCI), but it has several limitations. The Comorbidity and General Health Questionnaire (CGHQ) is a newly designed tool, which includes additional comorbidities associated with health-related quality of life (HR-QOL) and outcomes in neurological disorders. Aims and objectives: To assess the feasibility and validity of the CGHQ in patients with neurological disease. Method: Two hundred patients attending a general neurological clinic were invited to complete the CGHQ along with the EQ-5D-5L questionnaire. The CCI was simultaneously completed by the assessor. CGHQ comorbidity scores were compared with CCI, symptom burden and EQ-5D-5L scores. Results: The CGHQ captured 22 additional comorbidities not included on the CCI and more comorbidities were endorsed on the CGHQ. The CGHQ correlated weakly to moderately with CCI comorbidity scores. While both the CGHQ and CCI correlated negatively with the EQ-5D-5L Visual Analogue Scale, only the CGHQ correlated negatively with the EQ-5D-5L summary index. The CGHQ but not the CCI correlated strongly and positively with symptom burden scores. Conclusion: The CGHQ allows a more comprehensive assessment of comorbidities than the CCI and better correlates with patients’ overall symptom burden and HR-QOL in neurological patients

    Clinical outcomes after MRI connectivity-guided radiofrequency thalamotomy for tremor

    Get PDF
    OBJECTIVE: Radiofrequency thalamotomy (RF-T) is an established treatment for refractory tremor. It is unclear whether connectivity-guided targeting strategies could further augment outcomes. The aim of this study was to evaluate the efficacy and safety of MRI connectivity-guided RF-T in severe tremor. METHODS: Twenty-one consecutive patients with severe tremor (14 with essential tremor [ET], 7 with Parkinson's disease [PD]) underwent unilateral RF-T at a single institution between 2017 and 2020. Connectivity-derived thalamic segmentation was used to guide targeting. Changes in the Fahn-Tolosa-Marin Rating Scale (FTMRS) were recorded in treated and nontreated hands as well as procedure-related side effects. RESULTS: Twenty-three thalamotomies were performed (with 2 patients receiving a repeated intervention). The mean postoperative assessment time point was 14.1 months. Treated-hand tremor scores improved by 63.8%, whereas nontreated-hand scores deteriorated by 10.1% (p < 0.01). Total FTMRS scores were significantly better at follow-up compared with baseline (mean 34.7 vs 51.7, p = 0.016). Baseline treated-hand tremor severity (rho = 0.786, p < 0.01) and total FTMRS score (rho = 0.64, p < 0.01) best correlated with tremor improvement. The most reported side effect was mild gait ataxia (n = 11 patients). CONCLUSIONS: RF-T guided by connectivity-derived segmentation is a safe and effective option for severe tremor in both PD and ET

    Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration

    Get PDF
    Patients with Parkinson's disease can develop axial symptoms, including speech, gait and balance difficulties. Chronic high-frequency (>100 Hz) deep brain stimulation can contribute to these impairments while low-frequency stimulation (<100 Hz) may improve symptoms but only in some individuals. Factors predicting which patients benefit from low-frequency stimulation in the long term remain unclear. This study aims to confirm that low-frequency stimulation improves axial symptoms, and to go further to also explore which factors predict the durability of its effects. We recruited patients who developed axial motor symptoms while using high-frequency stimulation and objectively assessed the short-term impact of low-frequency stimulation on axial symptoms, other aspects of motor function and quality of life. A retrospective chart review was then conducted on a larger cohort to identify which patient characteristics were associated with not only the need to trial low-frequency stimulation, but also those which predicted its sustained use. Among 20 prospective patients, low-frequency stimulation objectively improved mean motor and axial symptom severity and quality of life in the short term. Among a retrospective cohort of 168 patients, those with less severe tremor and those in whom axial symptoms had emerged sooner after subthalamic nucleus deep brain stimulation were more likely to be switched to and remain on long-term low-frequency stimulation. These data suggest that low-frequency stimulation results in objective mean improvements in overall motor function and axial symptoms among a group of patients, while individual patient characteristics can predict sustained long-term benefits. Longer follow-up in the context of a larger, controlled, double-blinded study would be required to provide definitive evidence of the role of low-frequency deep brain stimulation

    Combining biomarkers for prognostic modelling of Parkinson's disease

    Get PDF
    BACKGROUND: Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers. OBJECTIVE: To determine if blood biomarkers (serum neurofilament light (NfL) and genetic status (glucocerebrosidase, GBA and apolipoprotein E (APOE))) are useful in addition to clinical measures for prognostic modelling in PD. METHODS: We evaluated the relationship between serum NfL and baseline and longitudinal clinical measures as well as patients' genetic (GBA and APOE) status. We classified patients as having a favourable or an unfavourable outcome based on a previously validated model, and explored how blood biomarkers compared with clinical variables in distinguishing prognostic phenotypes . RESULTS: 291 patients were assessed in this study. Baseline serum NfL was associated with baseline cognitive status. Nfl predicted a shorter time to dementia, postural instability and death (dementia-HR 2.64; postural instability-HR 1.32; mortality-HR 1.89) whereas APOEe4 status was associated with progression to dementia (dementia-HR 3.12, 95% CI 1.63 to 6.00). NfL levels and genetic variables predicted unfavourable progression to a similar extent as clinical predictors. The combination of clinical, NfL and genetic data produced a stronger prediction of unfavourable outcomes compared with age and gender (area under the curve: 0.74-age/gender vs 0.84-ALL p=0.0103). CONCLUSIONS: Clinical trials of disease-modifying therapies might usefully stratify patients using clinical, genetic and NfL status at the time of recruitment

    Neurofilament light levels predict clinical progression and death in multiple system atrophy

    Get PDF
    Disease-modifying treatments are currently being trialed in multiple system atrophy (MSA). Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data in multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in MSA. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study we recruited cross-sectional and longitudinal cases in multicentre European set-up. Plasma and cerebrospinal fluid neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; ROC analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease NfL levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival, and degree of brain atrophy than the NfL rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression, and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.European Union’s Horizon 2020 research and innovation programm

    Neck pain:What if it is not musculoskeletal?

    No full text

    Validation of a comorbidity questionnaire in patients with neurological disorders

    No full text
    Rational Several tools exist to assess comorbidities in neurological disorders, the most widely used being the Charlson Comorbidity Index (CCI), but it has several limitations. The Comorbidity and General Health Questionnaire (CGHQ) is a newly designed tool, which includes additional comorbidities associated with health-related quality of life (HR-QOL) and outcomes in neurological disorders.Aims and objectives To assess the feasibility and validity of the CGHQ in patients with neurological disease.Method Two hundred patients attending a general neurological clinic were invited to complete the CGHQ along with the EQ-5D-5L questionnaire. The CCI was simultaneously completed by the assessor. CGHQ comorbidity scores were compared with CCI, symptom burden and EQ-5D-5L scores.Results The CGHQ captured 22 additional comorbidities not included on the CCI and more comorbidities were endorsed on the CGHQ. The CGHQ correlated weakly to moderately with CCI comorbidity scores. While both the CGHQ and CCI correlated negatively with the EQ-5D-5L Visual Analogue Scale, only the CGHQ correlated negatively with the EQ-5D-5L summary index. The CGHQ but not the CCI correlated strongly and positively with symptom burden scores.Conclusion The CGHQ allows a more comprehensive assessment of comorbidities than the CCI and better correlates with patients’ overall symptom burden and HR-QOL in neurological patients
    corecore