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Abstract 5 

The recent validation of the alpha synuclein seed amplification assay as a biomarker with high 6 

sensitivity and specificity for the diagnosis of Parkinson’s disease has formed the backbone for a 7 

proposed staging system for incorporation in Parkinson’s disease clinical studies and trials. The 8 

routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment 9 

of Parkinson’s disease patients into trials (as distinct from patients with non- Parkinson’s disease 10 

parkinsonism or non- Parkinson’s disease tremors). There remain however further challenges in 11 

the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson’s disease, 12 

namely: optimising the distinction between different alpha synucleinopathies; the selection of 13 

subgroups most likely to benefit from a candidate disease modifying agent; as sensitive means of 14 

confirming target engagement; and in the early prediction of longer-term clinical benefit. For 15 

example; levels of cerebrospinal fluid proteins such as the lysosomal enzyme ß-16 

glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into 17 

disease modifying trials of agents with this enzyme as the target; the presence of coexisting 18 

Alzheimer disease like pathology (detectable through cerebrospinal fluid levels of Amyloid 19 

Beta-42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water 20 

or neuromelanin MRI may objectively track decline of Parkinson’s disease even in its later 21 

stages. The exploitation of additional biomarkers to the alpha synuclein seed amplification assay 22 

will therefore greatly add to our ability to plan trials and assess disease modifying properties of 23 

interventions. The choice of which biomarker(s) to use in the context of disease modifying 24 

clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the 25 

population recruited and the aims of the trial. The progress already made lends hope that panels 26 

of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and 27 

objective methods of confirming that an intervention is modifying a key pathophysiological 28 
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process of Parkinson’s disease. However, correlation with clinical progression does not 1 

necessarily equate to causation and the ongoing validation of quantitative biomarkers will 2 

depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal 3 

biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and 4 

those at each stage of manifest clinical Parkinson’s disease.  5 

 6 
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Abbreviations: AADC=L-aromatic amino acid decarboxylase; α-synuclein=alpha-synuclein; α -20 

syn SAA=α-synuclein seed amplification assay; Aβ=Amyloid beta peptides; AD=Alzheimer’s 21 

disease; APOE4=apolipoprotein E; APP=amyloid precursor protein; AUC=area under the curve; 22 

CTSD=cathepsin D; CBS=corticobasal syndrome; CCL5= chemokine ligand 5; CNS=central 23 

nervous system; CNTN-1=Contactin-1; CRP: C-reactive protein; DAT=dopamine transporter; 24 

DBM=Deformation-based morphometry; DJ-1=deglycase; DOPA=3,4-dihydroxyphenylalanine; 25 

DOPAC=3,4-dihydroxyphenylacetic acid; DLB=dementia with Lewy bodies; DNH=dorsal 26 

nigral hyperintensity; ET=essential tremor; EVs=extracellular vesicles; GBA1=Glucosidase beta 27 
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acid 1; GCase=B-glucocerebrosidase; GAP-43=growth associated protein 1 

43;GI=gastrointestinal; GFAP= Glial fibrillary acidic protein; HbA1c= glycated hemoglobin; 2 

HC=healthy controls; 5-HIAA=5-hydroxy-3-indoleacetic acid; HOMA-IR= Homeostatic Model 3 

Assessment for Insulin Resistance; HVA=homovanillic acid; HY=Hoehn and Yahr; 4 

IMR=immunomagnetic reduction; Il= Interleukin; IRS-1=insulin-receptor substrate-1; IRS-1 p-5 

Tyr= tyrosine-phosphorylated insulin receptor substrate-1; LN=lentiform nucleus; 6 

LRRK2=Leucine-rich repeat kinase 2; MCP-1=monocyte chemoattractant protein-1; miRNA= 7 

MicroRNA; MSA=multiple system atrophy; NAA/Cr=N-acetyl aspartate/creatine; 8 

ncRNA=Noncoding RNAs; NfL=neurofilament light chain; NFTs=neurofibrillary tangles; NLR: 9 

Neutrophil-to-lymphocyte ratios; Ng= neurogranin; NMI=Neuromelanin imaging; 10 

PD=Parkinson’s disease; PDCP=PD-related cognitive pattern; PDD=Parkinson’s disease 11 

dementia; PDRP=PD-related pattern; PET=Positron Emission Tomography; PGC1=Peroxisome 12 

proliferator-activated receptor γ coactivator 1; Pink-1=PTEN induced kinase 1; PIGD= postural 13 

instability and gait disorders; PLA= Proximity Ligation Assay; PMCA= Protein misfolding 14 

cyclic amplification; MRS=magnetic resonance spectroscopy; 31P-MRS= Phosphorus based 15 

magnetic resonance spectroscopy; PPMI= Parkinson’s progression markers initiative; 16 

PRKN=Parkin RBR E3 Ubiquitin Protein Ligase; pSer65Ub=phosphorylated ubiquitin residue at 17 

the serine 65; PSP=progressive supranuclear palsy; p-tau=phosphorylated tau; QSM=quantitative 18 

susceptibility mapping; RT-QuIC=real-time quaking-induced conversion; Ser-129p-α-19 

syn=Phosphorylated α-synuclein at serine-129; SCFA=short-chain fatty acids; SN=Substantia 20 

Nigra; SNARE= soluble N-ethylmaleimide sensitive factor attachment protein; SNAP-21 

25=synaptosomal-associated protein 25; sncRNA=small ncRNA; SNP=single nucleotide 22 

polymorphism; SPECT= single photon emission tomography; SWEDDS=scans without evidence 23 

of dopaminergic deficit; SWI=susceptibility- weighted imaging; t-tau=total tau; T2DM=Type 2 24 

diabetes mellitus; TSPO=translocator protein; VAMP=vesicle-associated membrane proteins; 25 

VBM=voxel-based morphometry; VMAT2=vesicular monoamine transporter 2; YKL-26 

40=chitinase-3-like protein 1 27 

 28 
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Introduction 1 

Modifying the relentless deteriorating course of Parkinson’s disease (PD) remains a critical yet 2 

currently elusive goal. Despite decades of trials evaluating promising candidates, no treatments 3 

have yet been proven to achieve this. While this may be due to lack of trial evaluation of truly 4 

effective agents, other potentially contributing factors include imprecise patient selection, 5 

inadequacies in trial design, failure to confirm target engagement, and the absence of objective 6 

measures of disease progression 1. 7 

 8 

One way of improving likelihood of success is by identifying better biomarkers. A biomarker is a 9 

characteristic that is objectively measured and evaluated from any substance, structure, or 10 

process that can be measured in the body or its products as an indicator of normal biological or 11 

pathogenic processes, or pharmacologic responses to a therapeutic intervention 2. An ideal 12 

biomarker should be readily quantifiable in accessible clinical samples (clinical assessments, 13 

biofluids (blood, cerebrospinal fluid (CSF), urine, saliva, tears, stool), imaging) and tissues (skin, 14 

oro-gastrointestinal mucosa)) while being reliable, quick, and inexpensive.  15 

 16 

Suboptimal patient selection in disease modifying trials may be related to poor diagnostic 17 

accuracy. Pathological modification (phosphorylation and conformational transformation) of the 18 

physiological protein, alpha-synuclein (α-synuclein) to misfolded oligomeric and fibrillary forms 19 

is the most consistent pathological feature of PD 3. The accumulation and interplay of these 20 

abnormal protein forms with the organelles/cellular pathways involved in their clearance as well 21 

as normal cellular maintenance and survival results in neuronal dysfunction and ultimately 22 

axonal injury and neuronal death. 23 

 24 

The α-synuclein seed amplification assay (α -syn SAA) has high sensitivity and specificity for 25 

PD diagnostic accuracy with a recent study of >1100 samples from the PPMI cohort 4 further 26 

confirming pre-existing evidence for its use5-11, and is now proposed as a core aspect of a 27 

potential staging system for PD12,13. This is potentially a pivotal step in clarifying eligibility 28 

criteria for inclusion in trials and distinguishing PD patients from those with atypical forms of 29 
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parkinsonism. While needing further clarification, the α-syn SAA is at the present time largely a 1 

binary measure simply indicating the presence/absence of the pathophysiological process of 2 

alpha synuclein aggregation and cannot yet be used to track disease severity which instead relies 3 

on clinical measurements.  4 

 5 

As such there is still a need for additional biomarkers that might enrich treatment arms for PD 6 

subgroups most likely to respond and allow early exploratory analyses according to engagement 7 

of the therapeutic with its putative target. Current trials typically rely on clinical end points with 8 

scales and questionnaires which are subject to inter-rater variability while potentially being 9 

confounded by symptomatic drug effects. Evaluations using scales may also be compromised by 10 

non-linear changes over time 14, may be limited by reduced compliance, recall bias and fatigue 11 

15, sometimes do not correlate sufficiently with quantitative objective assessments 16,17 and vary 12 

in their sensitivity at different disease stages 18,19 raising questions about inclusion of patients 13 

who may have progressed beyond the salvageable period.  14 

 15 

Biomarkers that are robustly demonstrated to track disease progression and treatment effects 16 

could potentially shorten periods of assessment and reduce the number of patients required for 17 

preliminary demonstration of efficacy. Ideally, short-term changes in the biomarker should 18 

anticipate long-term clinical outcomes. Furthermore, by confirming target engagement by the 19 

dose(s) of the agent under study, biomarkers can be used to improve the distinction between an 20 

intervention’s disease-modifying effects from purely symptomatic improvements. While there 21 

are parallel efforts exploring additional biomarkers for PD prior to clinically manifest disease, in 22 

this review, we will discuss the current state of fluid, tissue and imaging biomarker development 23 

in clinically established PD and their potential for use either alone, or in combination in future 24 

disease modifying clinical trials. 25 
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Fluid and tissue biomarkers 1 

Box 1 outlines techniques that have been used to measure different alpha-synuclein forms as well 2 

as other protein/enzyme levels that reflect cellular pathway abnormalities that can be measured 3 

in biofluids. 4 

 5 

Alpha synuclein  6 

Total, phosphorylated and oligomeric α-synuclein levels and their ratios in CSF, blood and other 7 

body fluids and tissues have all been explored for biomarker use. (Table 1)  8 

 9 

Distinguishing PD from other conditions 10 

Total free α-synuclein levels have been explored in CSF, plasma/serum, saliva and 11 

submandibular gland tissue and are of no diagnostic value in PD20-29.  Measurement of total α-12 

synuclein levels in extracellular vesicles (EVs) either in CSF 30, plasma/serum 31-38 or saliva39 13 

can distinguish PD from controls32-36,38,40-42. Total α-synuclein levels in EVs derived from 14 

neurons can also distinguish PD from atypical disorders though best distinction is achieved when 15 

α-synuclein levels are combined with levels of other proteins such as clusterin35,43. Similarly, 16 

differences in α-synuclein levels in neuronal compared to oligodendroglial derived EVs shows 17 

promise for distinguishing PD from MSA37. Phosphorylated α-synuclein at serine-129 (Ser-18 

129p-α-syn) levels are elevated in PD patients’ CSF 24,44-47, serum and plasma48-51 though similar 19 

elevations are seen in atypical parkinsonian conditions, limiting specificity/diagnostic use 52-55. 20 

Elevated levels are similarly seen for Ser-129p-α-syn in skin 29,56-60. A predilection for Ser-129p-21 

α-syn deposition in autonomic compared to somatosensory nerve fibres and proximal to distal 22 

gradients could be applied for improving distinction of PD from MSA-P61,62.  23 

Levels of α-synuclein oligomers are also increased in the CSF 27,47,63-67, plasma 68,69, RBCs 70,71, 24 

saliva and tears 28,63,72-77 of PD patients (although again with a few teams reporting contradictory 25 

findings 66,78,79). Oligomeric CSF α-synuclein levels taken alone however have unsatisfactory 26 

diagnostic properties 24. Combining oligomeric α-synuclein and aggregated tau measurement in 27 

serum neuronal derived exosomes seems to distinguish PD from tauopathies well80. Reliable 28 
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quantification and differentiation approaches between protein species (oligomers, fibrils and 1 

other aggregated forms) are currently lacking 50,52. Making these distinctions will be critical in 2 

improving the diagnostic performance of aggregated forms considering unique patterns have 3 

been noted in different synucleinopathies 81,82. Ratios of Ser-129p-α-syn and or oligomeric α-4 

synuclein to total α-synuclein are elevated in PD and seem most promising in overcoming 5 

limitations of individual markers for differentiating synucleinopathies 44,45,53,54,65,67,83 84. 6 

 7 

Seed amplification assays such as real-time quaking-induced conversion (RT-QuIC) and Protein 8 

misfolding cyclic amplification (PMCA) are arguably the most important achievement in the 9 

field of biomarkers to date and will likely be the most useful diagnostic biomarker for trials. 10 

These techniques can amplify and detect minute amounts of aggregated α-synuclein in CSF 10,85-11 

87. Studies comparing brain and CSF samples have demonstrated excellent performance for 12 

distinguishing PD from HC (sensitivity and specificity (90%–100%))  4-11 with comparable 13 

results for both seeding methods 7,10 across laboratories 10. Assays can also distinguish PD from 14 

non-synuclein disorders such as Progressive supranuclear palsy (PSP) and Corticobasal 15 

syndrome (CBS) 11 though accuracy for distinguishing multiple system atrophy (MSA) from 16 

these conditions is poor (sensitivity 4%–82%) while studies exploring α-syn SAA to distinguish 17 

MSA from PD have also reported variable findings86-90. As differences in α-synuclein strains and 18 

therefore biochemical, morphological, and structural properties of the final α-syn SAA reaction 19 

products underlie PD and MSA phenotypic heterogeneity, different outcomes may be explained 20 

by the fact that different chemical environments (SAA reaction mixes) can differentially 21 

influence formation and growth of different strains. Protocols optimized for PD may not 22 

therefore work so well for MSA detection11,91.  23 

 24 

In attempts to avoid lumbar puncture, α-syn SAA has been explored in samples obtained through 25 

less invasive approaches. Increased α-synuclein skin seeding activity has been observed in PD 26 

(post-mortem and living) patients with excellent distinction from non-neurodegenerative cases 92 27 

while aggregation rates using RT QuIC correlate with cognitive and motor status 8. Similarly, 28 

seeding activity in submandibular gland tissue of PD patients has been noted though sensitivity 29 

(73.2% vs 100%) and specificity (78.6% vs 94%) for distinguishing PD from HCs varies 30 
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between studies 93,94 while preliminary findings in saliva are also promising95. A recent report 1 

demonstrating excellent ability of serum immunoprecipitation-based RT-QuIC for distinguishing 2 

PD from HC may herald a new approach towards diagnosing PD through a simple blood test 3 

though lower detection rates in MSA, likely due to technical factors, will still need to be 4 

overcome96. Similarly, the demonstration of seeding activity from pathological α-synuclein 5 

derived from plasma EVs is also promising 97. The use of less invasive samples will be ideal for 6 

trial recruitment, (given feedback from patients regarding tolerability of submandibular gland 7 

biopsy) but will require demonstration of comparability with the high sensitivity and specificity 8 

achieved with CSF (although a recent meta-analysis suggests comparability between CSF and 9 

skin for diagnostic purposes89,98).  10 

 11 

Predicting severity phenotypes and measuring progression 12 

Total free α-synuclein levels do not correlate with disease severity and their ability to predict and 13 

track progression is also poor 21,24 48 .  EV total α-synuclein levels also predict and track 14 

progression in PD poorly 30,31,34,35,99,100.  15 

 16 

While Ser-129p-α-syn levels do seem to reflect disease severity 44,45,101 and motor symptom 17 

progression102 an inverse relationship in later disease (potentially as a result of extensive 18 

neuronal damage) 52,103 makes its use as a progression biomarker challenging if applied to trials 19 

with long term follow up or involving patients with established disease. CSF and serum levels of 20 

a number of other phosphorylated α-synuclein species have also been explored though 21 

preliminary findings are somewhat conflicting 104 105 106. A rostro-caudal pSer129-α-syn 22 

deposition gradient in the gastrointestinal (GI) tract of PD patients has also been noted, reflecting 23 

neurodegeneration in the myenteric plexus 107,108 although this may be a reactive physiological 24 

phenomenon109. Disentangling reactive from pathological components will be important as 25 

deposition may occur here earlier and therefore guide earlier treatment in early motor stages 26 

where diagnostic criteria have yet to be fully fulfilled.  27 

 28 
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Oligomeric CSF α-synuclein levels can also reflect PD severity and progression 46,53,101,103 1 

despite some contradictory evidence110 though previously highlighted limitations of 2 

differentiating aggregated forms need to be addressed. Longitudinal measurement of Ser-129p-α-3 

syn and or oligomeric to total α-synuclein ratios might detect effective treatment responses 4 

44,45,53,65,67,83,101. Similar findings have also been observed when measuring these ratios in serum 5 

and salivary EVs, although this does not seem to bring additional value34,35,38,84,111,112.   6 

 7 

Correlation of α-syn SAA with disease severity and progression is unclear and specific kinetic 8 

cut-offs remain elusive, though quantification of α-syn SAA end products with oligomer-specific 9 

ELISA may be helpful in this regard 10,113,114. Taken together, the best α-synuclein candidate 10 

biomarkers for diagnosing PD to consider for clinical trials is to use α-syn SAA. The ratios of 11 

Ser-129p-α-syn and or oligomeric α-synuclein to total α-synuclein can also helpfully 12 

differentiate between synucleinopathies 44,45,53,65,67,83, and are credible markers for tracking 13 

progression.  14 

 15 

Alzheimer disease (AD) like biomarkers  16 

Amyloid beta (Aβ) peptides are cleaved from the amyloid precursor protein (APP) into the 17 

peptides Aβ42 and Aβ40 which can form extracellular amyloid plaques 115,116. Tau proteins 18 

comprise highly soluble isoforms while their hyperphosphorylation contributes to the 19 

development of neurofibrillary tangles (NFTs) 117. Amyloid plaques are abundant in the central 20 

nervous system (CNS) alongside NFTs in Alzheimer’s disease (AD) while NFTs are 21 

characteristic of progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) 118,119.  22 

Distinguishing PD from other conditions 23 

Biomarkers reflecting tau and amyloid pathology can be measured in CSF and blood and include 24 

free and EV levels of total tau (t-tau), phosphorylated tau (p-tau) and amyloid peptide isoforms 25 

(Aβ42 and Aβ40). Higher CSF t-tau and decreased Aβ42 levels occur in tauopathies. This 26 

combination best distinguishes PD from CBS though the relative rarity of this condition makes 27 

widespread testing in PD trials of modest value120,121. Preliminary evidence suggests 28 
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ultrasensitive tau SAA may identify/exclude patients with tauopathies from PD at trial 1 

recruitment 122 though a combined assay with α-synuclein would be more ideal. 2 

The combination of reduced Aβ42 and increased t-tau and p-tau levels is collectively termed “an 3 

AD-like profile” considering its specificity for diagnosing the condition 123. This profile occurs 4 

in a larger proportion of synucleinopathy patients with prominent cognitive dysfunction (i.e. 5 

Parkinson’s disease dementia (PDD) and Dementia with Lewy bodies (DLB)) 124-126. CSF AD-6 

like biomarkers may therefore be useful for differentiating DLB from other parkinsonian 7 

disorders, although for some interventional trials this distinction may be somewhat arbitrary. 8 

Levels of total and phosphorylated tau are increased in all parkinsonian disease groups and 9 

combining them with Aβ42 only usefully differentiates PD from frontotemporal dementia 127. 10 

Taken together these findings suggest free blood levels of these markers are unlikely to be of 11 

diagnostic value in trials. 12 

 13 

Predicting severity phenotypes and measuring progression 14 

Tau and AD pathology commonly coexist in synucleinopathy patients128 and correlate with an 15 

acceleration of cognitive decline129,130. PD patients with lower CSF Aβ42 levels at disease onset 16 

also have earlier appearance of cognitive impairment and more rapid conversion to PD related 17 

dementia 67,131,132. The measurement of CSF Aβ42 could therefore be of prognostic value by 18 

reflecting brain amyloid content even prior to apparent clinical cognitive impairment133. 19 

Although Aβ42 and tau can also be measured in blood, levels correlate poorly with cerebral  20 

pathology 134 potentially due to extra-cerebral sources such as platelets. Ultrasensitive 21 

immunoassay technologies such as immunomagnetic reduction (IMR) improves this 135 though 22 

correlation with cognitive function has been inconsistent 127,136,137. Similarly, total tau protein 23 

blood findings have been variable 136,137 potentially due to rapid changes in blood concentrations 24 

138, although higher t-tau levels seem to correlate with lower cognitive performance 139,  25 

Aβ42 and tau can also be detected in EVs. While also not of diagnost ic value, elevated levels in 26 

combination with elevated a-syn140,141 and lower serine phosphorylated Insulin receptor substrate 27 

(IRS-p312) which is a marker of neuronal insulin resistance in blood EVs 142, predicts worse 28 

motor and cognitive dysfunction progression phenotypes well. Larger replication studies of Aβ 29 
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and tau in EVs are needed to better assess their validity for predicting cognitive dysfunction in 1 

PD before adoption for widespread use. 2 

Measurement of other phosphorylated tau species (P-tau181, P-tau217, and P-tau231) in CSF 3 

and plasma can discriminate AD patients from cognitively unimpaired subjects and reflect 4 

cognitive measures and progression143. P-tau181 levels have been studied in PD and their ability 5 

to predict disease severity and cognitive decline has been mixed and therefore cannot currently 6 

be recommended for trial use144-146. Other tau species also show promise in AD and need further 7 

exploration in PD cohorts.  8 

 9 

Neuroinflammation 10 

Immune cells in the CNS and in the periphery are involved in PD neurodegeneration147. 11 

Measurement of cellular components and levels of inflammatory mediators have therefore been 12 

explored for biomarker purposes. (Table 2) Glial fibrillary acidic protein (GFAP) is released 13 

from astrocytes into the bloodstream and its level can be used to distinguish PD from HC, 148,149 14 

while its ability to discriminate PD from other atypical parkinsonisms is unclear. The glial 15 

activation biomarkers YKL-40 (chitinase-3-like protein 1) and MCP-1 (monocyte 16 

chemoattractant protein-1) are increased even further in atypical parkinsonian patients compared 17 

to PD and can thus reliably discriminate tauopathies from synucleinopathies 150,151 though this is 18 

best achieved by combining them with a panel of non-inflammatory CSF biomarkers (AUC = 19 

0.95) 152. Within PD patients, GFAP levels seem to predict the development of dementia153 20 

 21 

Neutrophil-to-lymphocyte ratios (NLR) are indicative of overall inflammatory status and are 22 

elevated in PD compared to healthy controls 154 as is a proinflammatory lymphocyte profile 23 

(diminished T regulatory and increased T helper cell levels) 155 156-158. NLR has been negatively 24 

associated with presynaptic radionuclide striatal-binding ratios and positively associated with 25 

motor impairment 154,159,160 while a proinflammatory lymphocyte profile shift is associated with 26 

more severe motor and cognitive impairment 161,162 and an increase in Tregs expressing CD49d is 27 

linked to lesser motor impairment 163. Altered lymphocytes lead to and are in turn influenced by 28 

cytokines. Elevated C-reactive protein (CRP), Interleukin (Il) 6 and Il-10 as well as tumour 29 
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necrosis factor α and chemokine ligand 5 (CCL5, RANTES) levels have been noted in PD 164-172. 1 

Current evidence does not however suggest these markers would help in distinguishing PD from 2 

atypical conditions considering inconsistent findings between studies157,173-175 and small-to-3 

intermediate effect sizes 176. Similarly, associations with non-motor symptoms noted particularly 4 

for Il-6 and IL-10177 are unlikely to be of value for trial design though associations of pro-5 

inflammatory cytokines particularly CRP and CCL5 with reduced survival 178 and the 6 

development of motor and cognitive impairment179-181 is of value for both prognosis and 7 

monitoring progression. 8 

  9 

Taken together, the value of individual inflammatory markers is low, although combining several 10 

inflammatory markers for predicting disease progression will likely contribute to future 11 

approaches181,182. While better validated general biomarkers of progression exist, these panels 12 

could be particularly useful at enriching trials testing agents targeting inflammatory pathways. 13 

 14 

Genetics and gene regulation  15 

The relationship between genetic risk factors for PD, and the pathophysiological processes 16 

underlying PD are under renewed scrutiny based on the use of α-syn SAA in CSF. People with 17 

Leucine-rich repeat kinase 2 (LRRK2) mutations may develop typical PD, positive α-syn SAA in 18 

CSF and typical PD pathology at post mortem183, while the phenotype, pathophysiology and α-19 

syn SAA findings and post mortem pathology can also be completely different despite the same 20 

LRRK2 mutation184. The far lower rates of positivity of the CSF α-syn SAA among LRRK2 21 

mutation carriers, questions whether to include LRRK2 mutation carriers within trials targeting 22 

alpha synuclein specifically, and potentially other broad interventions being considered for PD 23 

neurodegeneration.185 Nevertheless there is great interest in targeting LRRK2 as a means of 24 

influencing disease progression in PD, and genetic status may be of greater relevance for these 25 

interventions than other biomarkers. That said, the most advanced LRRK2 inhibitor trial has 26 

pragmatically chosen to focus recruitment of a combination of PD patients with and without 27 

LRRK2 mutations (NCT05348785), while other LRRK2 specific interventions may specifically 28 

want to recruit the subgroup who are positive for the α-syn SAA. 29 
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 1 

Of relevance to this point, molecular dysfunction of pathways downstream from LRRK2 also 2 

occur and these are being explored as biomarkers in trials targeting this enzyme. pS1292-LRRK2 3 

levels are higher in urinary EVs in idiopathic PD and correlate with motor severity 186. 4 

Furthermore, CSF EV pS1292-LRRK2 levels are ten-fold higher than urinary EV levels 5 

suggesting relevance for CNS activity 187. Genetic variability may therefore be considered for 6 

selecting patients for precision medicine interventions as well as for helping balancing trial arms 7 

for progression, or adjusting for baseline differences in longitudinal analysis. pS1292-LRRK2 8 

levels or other downstream molecular abnormalities (whole-blood pS935 LRRK2 levels, 9 

peripheral blood mononuclear cell pT73 Rab10 levels, urine di-22:6-bis (monoacylglycerol) 10 

phosphate, and CSF total LRRK2) may become useful tools for measuring target engagement 11 

and therapeutic response to agents specifically targeting these pathways as has been 12 

demonstrated in a recent early stage LRRK2 inhibitor trial188 (Supplementary Table 1). 13 

 14 

Other genetic factors can also determine phenotypic severity and progression. PD patients with 15 

the A53T alpha synuclein mutation experience worse autonomic and cognitive deterioration 189 16 

while apolipoprotein E gene (APOE4) and Glucosidase beta acid 1 (GBA1) PD patients have 17 

accelerated cognitive 190-194 and motor deterioration 195 though this may be constrained to 18 

specific mutations/polymorphisms 196-198. Polygenic risk scores for predicting rate of progression 19 

appear promising although need replication199,200. 20 

 21 

Noncoding RNAs (ncRNA) contribute to gene expression regulation. MicroRNA (miRNA) are 22 

small ncRNA (sncRNA) which have been explored for biomarker potential. Unique serum 23 

miRNA patterns comprising upregulation (miR-6836-3p and miR-6777-3p) and downregulation 24 

(miR-493-5p, miR-487b-3p, and miR-15b-5p) have been noted in PD 201 202 and supported by 25 

known involvement of these miRNAs in PD pathogenic processes. Sampling, quantification, and 26 

analysis approaches need to become standardised to facilitate between study comparisons. 27 

SncRNA analysis from CSF EVs may also be worth further exploration 203. While plasma  EV 28 

miRNA measurement appears useful when distinguishing PD from HC (AUC 0.85 (miR331-5p) 29 

and 0.90 (miR-505) 204), the combination of miR153 and miR-409-3p using the CSF EV 30 
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approach is even more impressive (AUC 0.99) 205. miRNAs may likely play a diagnostic role in 1 

future trials depending on the mode of action of the drug being studied. 2 

 3 

Lysosomal dysfunction  4 

The GBA1 gene encodes the lysosomal enzyme -glucocerebrosidase (GCase). GBA1 mutation 5 

carriers have almost uniformly positive α-syn SAA in CSF4. Impaired GCase and other 6 

lysosomal enzyme activity (e.g. cathepsin D (CTSD)) in GBA1-carrier and non-carrier PD 7 

patients leads to lysosomal dysfunction thus negatively impacting α-synuclein degradation 206,207.  8 

Although CSF GCase activity depends on the specific GBA1 mutation carried, levels are also 9 

lower in idiopathic PD patients compared to controls208. GCase levels are however of low value 10 

for diagnosing PD though combining GCase activity with oligomeric/total α-synuclein ratios 11 

(AUC = 0.87, 82% sensitivity, 71% specificity) as well as other lysosomal enzymes (CTSD and 12 

-hexoxaminidase), and A-42 improves this (AUC = 0.83, 75% specificity, 84% sensitivity) 209.  13 

 14 

CSF GCase levels correlate with cognitive impairment210 while activity also seems to predict 15 

subsequent development of dementia regardless of genetic status211 . CSF GCase levels may 16 

therefore usefully allow enrichment of clinical trial arms testing agents targeting this enzyme 17 

(even in the absence of a GBA1 mutation) as well as a method for confirming target engagement. 18 

Blood GCase activity is also reduced compared to HC though prediction of progression has not 19 

been explored212,213. GCase activity is being used as an exploratory outcome in recent disease 20 

modification trials in conjunction with its downstream hydrolytic product glucosylceramide. 21 

(Supplementary Table 1) Glucosylceramide can distinguish GBA-PD from idiopathic PD and 22 

HC and be measured in both plasma and peripheral blood mononuclear cells and therefore used 23 

as a biomarker for target engagement in clinical trials targeting GBA-PD214,215. 24 

 25 

Mitochondrial dysfunction  26 

Mitochondrial dysfunction contributes to the pathogenesis of PD216. The existence of inherited 27 

autosomal recessive parkinsonism due to mutations of Parkin (PRKN), PTEN induced kinase 1 28 
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(Pink-1) and the protein deglycase (DJ-1) gene which encode proteins that mediate mitophagy 1 

supports this link217,218 . Typical α-synuclein pathology is  less consistently reported in people 2 

with these mutations and the rate of positivity of the α-syn SAA in CSF is also low96,185 thus 3 

reinforcing the potential importance of both genetic testing and selection of additional other 4 

biomarkers during trial recruitment and follow up, depending on the mode of action of the agent 5 

being tested.  6 

The best explored mitochondrial biomarker in this context is CSF DJ-1, levels of which are 7 

decreased in PD219,220 compared to controls and correlate with disease severity20 though 8 

similarities with other parkinsonian syndromes make its diagnostic use unlikely 221,222. Similar 9 

poor diagnostic value has been noted for serum and plasma DJ-1 levels223-225. Other less well 10 

studied biomarkers include phosphorylated ubiquitin at the serine 65 residue (pSer65Ub) which 11 

occurs by virtue of loss of the mitochondrial membrane potential triggering the stabilization of 12 

Pink1 at the outer mitochondrial membrane226. While increased pSer65Ub levels have been 13 

observed in PD post-mortem brains, lower levels have been identified in familial PD with 14 

Pink1/Parkin mutations227,228. Explorations of this marker in biofluid samples will be of interest 15 

possibly as confirmation of target engagement and longitudinally to assess progression rates of 16 

disease in these PD subtypes. Similarly, the peroxisome proliferator-activated receptor γ 17 

coactivator 1 alpha (PGC-1α) has been of interest due to its role as a regulator of mitochondrial 18 

function229. The PGC-1α reference gene and PGC-1α levels are downregulated in human brain 19 

and blood leukocytes in PD compared to control patients and this negatively correlates with 20 

disease severity230-232. Interventions targeting mitochondrial processes might usefully measure 21 

peripheral levels of PGC-1α. 22 

A concern however for the use of mitochondrial blood-based biomarkers is that they do not 23 

recapitulate neuronal mitochondrial dysfunction. Genetic mutations leading to mitochondrial 24 

dysfunction in PD often show tissue-specific expression patterns and therefore peripheral blood 25 

changes may lack interpretability233,234. This is supported by a recent study showing negligible 26 

diagnostic value for well-established biomarkers of mitochondrial disease such as Fibroblast 27 

growth factor 21 and Growth differentiation factor 15 in reflecting mitochondrial dysfunction in 28 

PD patients227. 29 

 30 
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Insulin resistance  1 

The coexistence of Type 2 diabetes mellitus (T2DM) with PD results in more rapid motor and 2 

cognitive progression 235-238. Faster progression appears to be independent from the existence of 3 

vascular disease in the brain 239 and at least in part explained by disruptions in physiological 4 

brain insulin signalling (central insulin resistance) 240 contributing to neurodegeneration 241.  5 

 6 

Central insulin resistance can be measured through abnormalities in insulin signalling mediated 7 

by insulin-receptor substrate-1 (IRS-1). Tyrosine IRS-1 phosphorylation (IRS-1 p-Tyr) evokes 8 

insulin responsiveness, while serine phosphorylation primarily deactivates IRS-1 and attenuates 9 

insulin signalling 240,242. Elevated IRS-1 phosphorylation at serine positions 616 (IRS-1 p-S616) 10 

and 312 (IRS-1 p-S312) represents attenuated insulin signalling 243,244 and has been noted in 11 

plasma EVs of PD patients 245,246. Decreased IRS-1 p-Tyr distinguishes PD patients from HC and 12 

predicts cognitive impairment and motor severity 142. Increases in EV IRS-1 p-Tyr were 13 

associated with motor benefits from exenatide in a clinical trial while increases in downstream p-14 

Akt S473 predicted treatment response 245. (Supplementary Table 1). 15 

 16 

Peripheral insulin resistance as defined by a Homeostatic Model Assessment for Insulin 17 

Resistance (HOMA-IR) value ≥ 2.0 or glycated hemoglobin (HbA1c) concentration ≥ 5.7%, 18 

occurs in up to 60% of PD patients 247. The mechanistic importance of these finding in PD 19 

remains unclear as the HOMA-IR is not associated with cognition or motor symptoms 248,249. 20 

Abnormal range HbA1C levels however predict motor and cognitive severity and progression in 21 

PD, while also being associated with the degree of axonal damage 250-253. Further exploration of 22 

insulin resistance and/or body mass index in the selection of patients for trials of agents that 23 

mechanistically target this pathway is clearly of potential importance, while measurement of 24 

central insulin resistance using exosome IRS-1 p-Tyr may turn out to be of utility in confirming 25 

target engagement for a growing number of agents currently being studied for disease 26 

modification 254. 27 

 28 

Synaptic degeneration 29 
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Disruptions to vesicle-mediated trafficking and secretory pathways with downstream effects on 1 

neurotransmitter levels and signalling as well as synaptic plasticity, are key features of 2 

synucleinopathies255. Proteins at different levels of this process have been explored for 3 

biomarker use (Table 2). Evidence to date suggests limited usefulness in PD, in part due to the 4 

confounding effect of dopaminergic therapies. Despite some studies suggesting alterations in 5 

serum and CSF levels of synaptic dopamine potentiators (β-Synuclein and growth associated 6 

protein 43 (GAP-43)) 255-261 and markers of synaptic plasticity (neurogranin (Ng),  Contactin-1 7 

(CNTN-1) and the zinc transporter ZnT3) in PD, inconsistencies between studies and poor 8 

correlation with motor severity and cognitive progression make future utility unlikely 260,262-269.  9 

CSF concentrations of the secretory granule proteins (VGF and secretogranin-2) and the dense 10 

core vesicle protein prodynorphin are potentially useful in distinguishing PD from DLB or 11 

predicting cognitive decline270,271. Similarly, preliminary studies suggest CSF levels of the 12 

excitatory-inhibitory regulatory protein, Neuronal pentraxin-2 (NPTX2)271 and the glutamate 13 

receptor GluA3263 suggest value in reflecting cognitive status and distinguishing PD from 14 

DLB272 and thus warrant further exploration in the assessment of cognitive progression. 15 

Measuring panels of CSF protein levels reflecting neurotransmitter secretion, synaptic plasticity 16 

and autophagy will likely shape any future use of these markers273. An example of this approach 17 

includes combining CSF and serum EV levels of the principal components of the soluble N-18 

ethylmaleimide sensitive factor attachment protein (SNARE) complex (synaptosomal-associated 19 

protein 25 (SNAP-25), the syntaxins 1A and 1B, syntaxin-binding protein-1, and the vesicle-20 

associated membrane proteins (VAMP-1, VAMP-2)) with oligomeric α-synuclein to improve 21 

diagnostic accuracy 264,274. Similarly,  combining CSF Ng, NPTX2, total α-synuclein, and age 275 22 

or CNTN-1, total α-synuclein, total tau, phosphorylated tau, and Aβ1-42262) can also improve 23 

diagnostic distinction.  24 

A similar approach would also be worthwhile when considering the use of neurotransmitter 25 

metabolites. Despite decreased CSF levels of the dopamine metabolite homovanillic acid (HVA) 26 

being consistently noted in PD 276-281, repeated measurements in the Deprenyl and Tocopherol 27 

Antioxidative Therapy of Parkinsonism (DATATOP) study did not suggest usefulness for 28 

monitoring progression. Simultaneous metabolite panel measurement of dopaminergic (eg, 3,4-29 

dihydroxyphenylalanine [DOPA], dopamine, 3,4-dihydroxyphenylacetic acid [DOPAC]), 30 
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noradrenergic (eg, 3,4-dihydroxyphenylglycol, 4-hydroxy-3-methoxyphenylglycol) and 1 

serotonergic (eg, 5-hydroxy-3-indoleacetic acid [5-HIAA]) metabolites in CSF280 however 2 

correlates better with motor severity and DaT-SPECT uptake282,283 and utility of the panel as a 3 

progression marker needs to be further explored.  4 

 5 

Axonal damage  6 

Neuro-axonal damage represents the end event of the pathophysiology of PD. Axon 7 

cytoskeletons are comprised of neurofilaments, structural proteins which allow for growth with 8 

large, myelinated axons having the highest content 284. Neurofilament subunits are released upon 9 

axonal injury irrespective of the cause 284. The neurofilament light chain (NfL) subunit is of 10 

diagnostic value in degenerative parkinsonian syndromes 285 while also correlating with 11 

nigrostriatal degeneration and greater reductions in presynaptic putaminal dopamine transporter 12 

(DAT) ratios over time 286 287. This said, CSF NfL concentration does not seem to be increased in 13 

early PD 288 and significant increases are more indicative of atypical diagnoses rather than PD 14 

288-291. 15 

 16 

Blood NfL strongly correlates with CSF NfL 292-294 and reflects neurodegeneration in PD 294-297. 17 

Although NfL levels were not elevated in a meta-analysis considering all patients with PD293 and 18 

in one study exploring EV NFL levels298, levels seem to be higher in more advanced PD  19 

292,294,296,299 and the more severe PIGD-subtype 300,301. Consistent inverse associations with 20 

cognitive scores have been reported 47,295-297,302-305 while NfL levels also predict more severe 21 

motor progression 287, cognitive decline 301,306 and progression to milestones (walking-aid, 22 

nursing-home living, reaching final Hoehn and Yahr (HY) stage 5 or death). Blood NfL may 23 

therefore be useful for trial stratification although its potential use as a surrogate endpoint might 24 

depend on the disease stage of recruited participants and trial duration 299,307. 25 

 26 

The highest yield when using NfL seems to lie in combining it with clinical and disease specific 27 

fluid biomarkers. Examples of this include the ratio of NfL to Aβ42 in CSF, discriminating PD 28 

from PSP with good accuracy (AUC 0.93, sensitivity 89%, specificity 93%) 308  as well as the 29 
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use of a stepwise approach of firstly distinguishing synucleinopathies from non-1 

synucleinopathies with skin α-syn SAA and then further distinguishing MSA from PD with 2 

NfL309 or by combining CSF NfL, CSF α-synuclein SAA and brainstem imaging310. Similarly, 3 

PD progression is better predicted when combining markers with serum NfL, genetic status 4 

(ApoE4 and GBA) and validated prognostic clinical variables (age, verbal fluency, UPDRS axial 5 

scores) predicting unfavourable progression better than individual markers 311.  6 

 7 

Imaging biomarkers 8 

A range of imaging modalities have been explored for their biomarker potential. These include 9 

sonographic measurement of nigral signal, imaging approaches that measure brain structure, 10 

spectroscopy to explore brain biochemical changes, functional imaging to measure connectivity 11 

changes and radionuclide imaging to assess pre-synaptic and post synaptic dopaminergic and 12 

non-dopaminergic integrity as well as metabolic functional changes. (Box 2) Each approach has 13 

its strengths and weaknesses and potential biomarker roles in trials will depend on the stage of 14 

disease being studied as well as practical considerations of availability and effect strengths 15 

alongside and in comparison with, fluid biomarkers.   16 

 17 

In the proposed staging system for PD, the development of dopaminergic dysfunction has been 18 

incorporated as an important staging threshold12. The range of imaging approaches that could be 19 

used for this are variable in their ability to discriminate PD from other pathophysiological 20 

processes as well as their potential for measuring the rate of progression of PD. 21 

 22 

Transcranial Sonographic Imaging  23 

Increased Substantia Nigra (SN) echogenicity likely due to accumulation of nigral iron is 24 

observed in PD 312-314 though a proportion of healthy controls and Essential Tremor patients also 25 

exhibit this 315. This sign can however differentiate PD from PSP and MSA with good sensitivity 26 

(91%) and specificity (82–96%) 312. Hyper-echogenicity remains unchanged over follow-up 316 27 
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and does not correlate with disease severity 314,317 or presynaptic DAT loss 318 thus limiting use 1 

as a progression marker.  2 

 3 

Structural MRI techniques 4 

Structural MRI approaches comprise; T1-weighted structural imaging methods which measure 5 

cortical and subcortical volumetric changes and brain atrophy; neuromelanin-sensitive T1-6 

weighted imaging which is sensitive to measuring neuromelanin-iron complexes; iron-sensitive 7 

MRI which captures iron deposition and dopaminergic cell loss; and diffusion imaging using 8 

either single-tensor or 2-compartment diffusion modelling (free-water) which reflects 9 

neurodegeneration and/or neuroinflammation. 10 

 11 

T1-Weighted Structural MRI 12 

T1-based structural MRI methods comprise; cortical thickness measurement, voxel-based 13 

morphometry (VBM) and Deformation-based morphometry (DBM). Differences of these 14 

approaches are summarised in Box 2.  15 

 16 

Structural differences in the midbrain, putamen, brainstem, and cerebellum can distinguish PD 17 

from atypical parkinsonian disorders319. This distinction is however best made in later disease 18 

stages, at a time when disease modification approaches may be hardest to achieve. Novel 19 

automated indexes may improve this though will need to be tested in independent cohorts320.  20 

 21 

In the PPMI cohort, deformation-based morphometry detected a unique atrophy pattern which 22 

predicted motor progression in early PD without dementia 321. A faster decline in prefrontal and 23 

cingulate cortices and the caudate and thalamus has also been seen in de novo PD compared to 24 

controls322 while greater frontal atrophy after 18 months has also been noted in PD patients 25 

without cognitive impairment with a disease duration of only 2 years 323 (though these findings 26 

were separately contradicted 324).  27 
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 1 

Studies in individuals with moderate to late-stage PD without dementia have also varied. No 2 

VBM differences were noted in one study 325 while another found reduced grey matter in the 3 

frontal lobe 326. Longitudinal atrophy of occipital and fusiform regions has been noted in patients 4 

with a disease duration of over 5 years without cognitive impairment, while patients with 5 

cognitive impairment develop greater and more widespread atrophy in supplementary motor 6 

area, temporal, parietal, and occipital cortices 327. Accelerated loss of gyrification in bilateral 7 

frontal and parietal regions in patients with a disease duration greater than 5 years compared to 8 

less than 5 years has also been noted 328.  9 

 10 

In summary, T1-weighted structural MRI methods are sensitive to neurodegenerative 11 

progression even in the absence of cognitive impairment though this also seems to be better in 12 

more advanced disease stages. Replication studies demonstrating patterns of atrophy progression 13 

depending on disease stages are however currently lacking and will be important before 14 

recommendation for trial use. Furthermore, ascertaining the precise role of ultra-high-field 15 

scanners (7 T and above) which can provide sub millimetric anatomical information and higher 16 

degrees of diagnostic detail compared with 3 T MRI 329 will be important. Planned future 17 

longitudinal studies will be critical for informing this 330. 18 

 19 

Neuromelanin & Iron sensitive imaging  20 

Neuromelanin imaging (NMI) demonstrates only moderate sensitivity and specificity for 21 

distinguishing PD from healthy controls 331-335 while signal differences are also suboptimal for 22 

distinguishing atypical parkinsonian conditions from PD336,337. In contrast however, NMI shows 23 

reduced signal across disease stages (disease duration of 1.5 to 10 years) with a ventrolateral to 24 

anteromedial Substantia nigra (SN) progression pattern consistent with the neuropathological 25 

patterns of cell loss.  26 

 27 

Iron-sensitive techniques including R2* relaxation imaging, susceptibility- weighted imaging 28 

(SWI), and quantitative susceptibility mapping (QSM) have similar ability to quantify nigral iron 29 
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deposition as NMI 338-340. The absence of dorsal nigral hyperintensity corresponding to the region 1 

of nigrosome-1 (DNH) on iron-sensitive sequences distinguishes PD from controls well 329,341,342 2 

regardless of disease duration 343. Use for distinguishing atypical disorders from PD is however 3 

lacking while progression marker use seems to be disease duration dependent.  4 

 5 

Although striatal, nigral, globus pallidus and caudate R2* relaxation rate increased in 2 separate 6 

studies after 2-years in early-stage PD 339,344, separate studies exploring R2* or QSM in de-novo 7 

patients 340 and patients with a disease duration < 1 year showed no longitudinal changes 343. The 8 

use of R2* as a progression marker becomes clearer however in later disease stages343 with 9 

increased relaxation time in SN R2* mapping over 3 years correlating with motor severity in 10 

cases with an initial disease duration of 5 years 345 while faster progression in the SN pars 11 

compacta seems to occur after a disease duration > 5 years 343.  12 

 13 

Taken together, NMI and iron-sensitive imaging could potentially be usefully developed as 14 

progression biomarkers though values will need to be considered in the context of disease 15 

duration. Obviously, the use of iron-sensitive modalities will be particularly advantageous in 16 

trials targeting iron. 17 

 18 

Diffusion imaging  19 

Although some studies have demonstrated reduced SN fractional anisotropy with single tensor 20 

diffusion imaging in early PD 346-348 this was not confirmed by a meta-analysis of 10 studies 349. 21 

Evidence in later disease (disease duration 10 years) is limited to one study demonstrating more 22 

anterior and rostral SN involvement 348. On balance, this approach cannot currently be 23 

recommended for progression marker use. The finding of diffusion abnormality of the nucleus 24 

basalis of Meynert predicting development of cognitive impairment could be explored for 25 

balancing arms in small trials or selecting phenotypes that are likely to respond to specific 26 

treatments though replication of this finding is important 350. 27 

 28 
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Free water imaging studies have been more consistent with increased signal in the posterior SN 1 

being noted in early PD 351,352. Free water in the posterior SN also increases over 4 years and 2 

change over 1 year can predict H&Y 4-year change 352. This increase continues in later disease 3 

stages (duration over 7 years) where longitudinal increases in free water occurs in the anterior 4 

but not posterior SN 353. This modality is promising as a progression biomarker though may 5 

require selecting the region of interest depending on disease stage. Free-water imaging of the 6 

basal ganglia, midbrain, and cerebellum and the application of automated Imaging 7 

Differentiation is promising for differentiating PD from atypical conditions 354. This approach 8 

was found to be superior to a conventional Magnetic Resonance Parkinsonism Index as well as 9 

plasma NfL levels for distinguishing PD from atypical conditions355. 10 

 11 

Proton Magnetic Resonance Spectroscopy  12 

Proton magnetic resonance spectroscopy (MRS) reveals the metabolic status of the region 13 

sampled for a specific disease process. In PD, N-acetyl aspartate/creatine (NAA/Cr) ratios in the 14 

SN are reduced compared to controls and correlate with disease severity 356,357. Lower ratios 15 

have also been noted in the lentiform nucleus (LN), temporoparietal and posterior cingulate 16 

cortices, as well as the pre-supplementary motor area 358-361 though correlation with disease 17 

severity is less clear 359,360. NAA/Cr ratios are lower in the rostral SN in PD with an inverted 18 

pattern in atypical parkinsonian patients and HC 362. Taken together, there is some preliminary 19 

level of evidence that MRS could serve to improve PD diagnostics though may be best used in 20 

combination with conventional MRI by increasing specificity. 21 

 22 

Phosphorus based magnetic resonance spectroscopy (31P-MRS) has been of specific interest for 23 

a subset of potential interventions as it can assess mitochondrial function. In vivo Pi/ATP and 24 

PCr/ATP ratios reflect oxidative phosphorylation pathways 363. Reductions in ATP and PCr 364 25 

and increased Pi/ATP ratios 365 in the putamen and midbrain of PD patients compared to controls 26 

have been reported while differences can also distinguish PD from PSP (AUC 0.93)366. 27 

Longitudinal ratio improvement suggestive of target engagement was also noted in a recently 28 

completed disease modifying trial of ursodeoxycholic acid367.  29 
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 1 

Functional MRI 2 

Resting-state and task-based functional MRI reveal networks involved in motor, cognitive, and 3 

affective processes. Network impairments have been associated with motor and non-motor 4 

symptoms. Reduced resting-state connectivity between the striatum and thalamus, midbrain, 5 

pons and cerebellum has been noted in PD as have connectivity changes between cortical and 6 

subcortical areas 368. Reduced resting-state functional connectivity within the basal ganglia 7 

network can differentiate PD from HC (sensitivity 100%, specificity 89.5%) 369 while cerebellar 8 

connectivity with multiple brain networks differs between PD and MSA 370. Longitudinal task-9 

based functional MRI can track progression with declining activity in the putamen and primary 10 

motor cortex over 1 year  371 though the impact of levodopa administration on network 11 

connectivity is an important consideration 372. Although available evidence for this modality is 12 

overall promising, more widespread replication of diagnostic and progression findings are 13 

necessary.  14 

 15 

PET/SPECT imaging 16 

Radionuclide imaging 17 

Several radiolabelled probes for imaging α-synuclein have been explored though no tracer is 18 

currently of diagnostic value for PD. Issues to overcome include developing tracers for 19 

intracellular targeting with ideal lipophilicity, and tracer selectivity for α-synuclein over amyloid 20 

and tau aggregates 373,374. More recently however, a newly developed α-synuclein Positron 21 

Emission Tomography (PET) tracer, [18F] ACI-12589 was shown to bind to basal ganglia and 22 

cerebellar white matter in a small cohort though this was confined to MSA patients375. Larger 23 

studies examining diagnostic accuracy for distinguishing PD from MSA will be critical. 24 

 25 

Dopaminergic tracers 26 

A variety of radionuclide tracers are available to examine pre- and post-synaptic striatal 27 

dopaminergic function using Positron emission tomography (PET) or single photon emission 28 
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tomography (SPECT) imaging. At the presynaptic level, molecular targets and their respective 1 

tracers include L-aromatic amino acid decarboxylase (AADC/tracer F-DOPA), vesicular 2 

monoamine transporter 2 (VMAT2/tracer [11C]-dihydrotetrabenazine) and the dopamine 3 

transporter (DAT/tracers CFT PET and 123I-CIT SPECT) density.   4 

 5 

These markers are sensitive for the detection of dysfunction or loss of striatal dopaminergic 6 

terminals and enable the identification of parkinsonian syndromes with nigral neurodegeneration 7 

though do not reliably distinguish PD from atypical disorders. Visually assessing for the 8 

presence of nigrostriatal degeneration with this modality is increasingly used in trial 9 

recruitment376 to exclude patients with clinical presentations in keeping with PD but with scans 10 

without evidence of dopaminergic deficit (SWEDDS) due to e.g. drug induced parkinsonism377-11 

379. Objective measurement of striatal uptake in comparison to other regions may however be 12 

more useful in trials recruiting patients with more established PD as these ratios can reflect 13 

motor and non-motor disease severity as well as progression through disease stages although 14 

hemispheric dominance and type of tracer used are important considerations380. Striatal 15 

dopaminergic markers decline most prominently in the first years of motor disease before largely 16 

plateauing within 5 years of diagnosis381-384. Quantification of dopaminergic markers in the 17 

midbrain/SN may be better markers beyond this point 385.  18 

 19 

The type of dopaminergic tracer used can potentially be critical for tracking progression in trials 20 

and measuring treatment response with VMAT2 imaging is less subject to compensatory changes 21 

in expression than DAT and F-DOPA386. Quantitative dopaminergic assessments have been used 22 

in a number of recent disease modification trials though with overall negative findings to date. 23 

(Supplementary table 1)  24 

Dopamine receptor expression can also be estimated at the postsynaptic level with PET ligands 25 

such as [11C]-raclopride, [18F]-fallypride or 123I-IBZM SPECT (all of which bind to D2 26 

receptors) or agents such as [11C]NNC 112 which binds to D(1) receptors387. Preservation of 27 

post-synaptic dopamine receptors is typical of PD whereas post synaptic receptor loss early in 28 

the disease is more likely indicative of an atypical form of parkinsonism. Imaging results depend 29 

on the dose and timing of oral dopamjnergic replacement and the usefulness of this type of 30 
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imaging approach may perhaps be restricted to restorative approaches such as cell or gene 1 

therapy interventions388.  2 

 3 

Non-dopaminergic tracers  4 

Radionuclide imaging studies of the serotonergic and cholinergic systems demonstrate 5 

associations with non-motor PD pathophysiology. Reduced binding on serotonergic imaging has 6 

been noted in individuals with early PD (disease duration less than 5 years) 389. Serotonergic 7 

denervation also correlates with increased dopamine turnover and reduced levodopa responses 8 

390. In later disease stages (disease duration 5 to 10 or more years), serotonergic transporter 9 

binding remains reduced compared to controls 389 and the degree of serotonergic pathology is 10 

associated with cognitive decline 391. Cholinergic denervation also occurs in early PD (disease 11 

duration less than 3 years) but is more pronounced in PD with dementia 392. Noradrenergic 12 

activity, quantifiable by PET imaging is reduced in PD and is associated with the presence of 13 

RBD and cognitive impairment 393. The utility of these markers in tracking progression is of 14 

interest but not yet sufficiently clear. 15 

 16 

Synaptic density  17 

Synaptic density quantification irrespective of neurotransmitter type has also been of interest in 18 

PD. Tracers quantifying the concentration of the synaptic vesicle 2A protein (18F-UCB-H or 19 

11C-UCB-J) reflect this and have been studied in several cohorts. Lower binding potential in 20 

both cortical and sub-cortical regions have been noted in PD though this is most prominent in the 21 

SN394. Correlation with clinical status has however been inconsistent though one study suggested 22 

more prominent and extensive reductions in PD dementia and DLB cases395-397. Similarly, small 23 

cohort studies using 11C-UCB-J PET did not note binding changes over 2 years395,398. Current 24 

evidence therefore does not support the use of this marker in clinical trials. 25 

 26 

Metabolic and network imaging 27 

Glucose metabolism  28 
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18F-FDG-PET parieto-occipital hypometabolism is noted in PD 399,400 while preserved glucose 1 

metabolism in the basal ganglia distinguishes PD from MSA and PSP 399. Inferior parietal and 2 

left caudate glucose hypometabolism in PD, also correlates with motor and cognitive deficits 401. 3 

A unique PD-related pattern (PDRP) characterised by elevated pallidothalamic and pontine 4 

metabolic activity with reduction in the supplementary motor area, premotor cortex, and parietal 5 

association areas has also been noted in cases prior to dopaminergic treatment 402 and can 6 

differentiate PD from atypical parkinsonism 403.  7 

 8 

PDRP progresses in early PD (disease duration less than 2 years) over 24 months, suggesting 9 

potential progression marker use in the early stages 404 though a critical limitation is that acute 10 

dopaminergic treatment diminishes the pattern 405. A PD-related cognitive pattern (PDCP) 11 

characterised by a reduction in the medial frontal and parietal association regions, and metabolic 12 

increase in cerebellar cortex and dentate nuclei 406 has also been described. This pattern seems to 13 

occur years after the PDRP 404,407, increases over time 404 and is higher in those with dementia 14 

408. The PDCP also correlates with memory and executive performance 406 while its lack of 15 

change with dopaminergic treatment potentially supports its use as a marker of cognitive 16 

dysfunction 409. These separate metabolic networks could potentially be used to track progression 17 

and treatment response in the appropriate setting.  18 

 19 

Neuroinflammation imaging 20 

The PET ligands 11C-PK11195, 11C-PBR28 and 18F-FEPPA which bind to the 18 kDa 21 

translocator protein (TSPO) on mitochondria in microglia have been used for imaging 22 

neuroinflammation with TSPO upregulation suggesting microglial activation 410. 23 

PD clinical severity and putaminal presynaptic dopaminergic integrity correlates with 11C-24 

PK11195 binding 411. Binding affinity can vary with TPSO genetic polymorphisms which needs 25 

appropriate adjustment in analyses410,412. Taken alone, TPSO patterns lack the ability to 26 

distinguish parkinsonian conditions though their future use may be as biomarkers of therapeutic 27 

response for interventions targeting neuroinflammation 413. 28 

 29 
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Limitations of biomarkers 1 

 2 

A framework for considering the definition of PD according to the presence /absence of α-syn 3 

SAA-CSF is potentially a major step forward in planning PD trials. Several practical obstacles 4 

need to be considered however prior to the routine use/reliance on biomarkers in the clinical trial 5 

context. Firstly, acquiring some biomarkers e.g. CSF requires an invasive procedure which may 6 

be unacceptable for some participants. Growing evidence of the equivalence of α-syn SAA-in 7 

skin to that seen with CSF could however overcome this limitation.  The demonstration of 8 

equivalence of testing on even less invasive samples such as serum/plasma or within peripherally 9 

obtained EVs is therefore a priority. With greater demonstration of validity, routine testing of 10 

peripherally acquired biomarkers can become normal practice, for example the widespread 11 

availability of plasma NfL testing in healthcare laboratories.  12 

 13 

Interpretation of discrepant results between studies attributable to preanalytical and analytical 14 

confounders, different techniques employed and a lack of factoring of different protein species 15 

measured (total α-synuclein vs oligomeric) needs careful critique. Similarly, imaging studies are 16 

affected by methodological discrepancies including different assumptions for correction of serial 17 

data as well as sample size, power, and study design caveats and the use of different outcome 18 

measures. Collaborative studies allowing analysis of larger sample sizes with adequate follow-up 19 

that employ standardized sampling and analysis methodology will improve these limitations, as 20 

demonstrated by the harmonisation of large numbers of samples processed in PPMI. 21 

 22 

The major limitation in biomarker discovery is undoubtedly difficulty with validation. 23 

Association between a change in a biological assay alongside a clinical state need not equal 24 

causation. For example, biological changes may represent healthy compensatory responses to a 25 

pathological process. Furthermore, even biomarkers that do reflect active processes of 26 

neurodegeneration may not have linear relationships over the course of disease particularly if 27 

production ultimately declines because of widespread tissue death. While it is possible to use 28 

clinico-pathological data for validation, confirmation that a biomarker predicts slowing of 29 
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disease progression necessarily requires the identification of an agent which achieves this 1 

according to our threshold whether that be clinical, patient reported, functional impairment or 2 

quality of life milestones which have inherent limitations.  3 

 4 

To date, no single biomarker can yet be recommended to act as a surrogate for clinical disease 5 

progression in PD. Combinations of fluid biomarkers invariably increase the strength of their 6 

individual predictive properties. While fluid and imaging biomarkers are often collected from the 7 

same trial participants, explorations of the utility of multiple fluid biomarkers as a panel 8 

alongside imaging in combination, are rare. This approach was partly adopted in the recent 9 

deferiprone trial (Supplementary Table 1) where brain iron content using T2* sequences and 10 

plasma ferritin and prolactin levels were used as combined markers of target engagement and 11 

specific measures of treatment effect while structural imaging for measurement of brain atrophy 12 

and DAT-SPECT imaging was used to explore the impact of the agent on overall disease 13 

progression (atrophy and nigrostriatal degeneration). Although clinical worsening in the 14 

deferiprone treated group complicates interpretation of how well the panel of biomarkers 15 

performed, one could argue that they did reflect the effect of the drug with decreased 16 

nigrostriatal iron content and plasma ferritin and increased plasma prolactin in the deferiprone 17 

group, while no inverse correlation between brain-structure volumes and iron content was noted 18 

in keeping with the negative clinical findings over a relatively short duration of  follow-up.  19 

 20 

Challenges for future trials will be in the choice of selection of suitable combinations of fluid and 21 

imaging biomarkers that complement each other. This will certainly need to be strongly guided 22 

by the biological action of the agent being tested and the stage of the disease of their participants 23 

being treated, though those biomarkers that appear to most closely align with disease progression 24 

should be prioritised. How much weight each biomarker in the panel will ultimately carry will 25 

become more easily evident following a positive clinical trial. 26 

 27 
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Conclusions & Recommendations 1 

The identification of a better framework for the certainty of a PD diagnosis based on positivity of 2 

α-syn SAA-CSF is a major step forwards, and less invasive equivalent alternatives will help even 3 

more. The further development of reliable biomarkers of PD neurodegeneration could further 4 

facilitate prognostication, identification of disease subtypes, conduct of clinical trials and 5 

identification of agents that may slow down or stop these processes. The precise role for 6 

biomarkers will depend on the mechanism of action of the agent in question, and the decision 7 

made regarding the stage of the illness at which the intervention is being applied. There is 8 

interest in recruiting people earlier in the neurodegenerative process, even prior to symptom 9 

onset, given that intuitively earlier intervention may provide a better chance of preventing 10 

irreversible cell death 414. Alongside trials in prodromal cohorts, there will remain a need to 11 

identify whether any disease modifying intervention has an impact on the 6-10 million people 12 

already struggling with symptoms, and in need of prevention of further decline.  13 

 14 

In this group, PD diagnosis is less difficult though a sizeable proportion of cases at this stage 15 

with atypical parkinsonian disorders can be mistaken as suffering from PD and therefore 16 

inadvertently recruited into disease modifying trials. While there will remain healthy debate 17 

whether α-synuclein oligomeric seeding and propagation is the primary cause of PD 18 

neurodegeneration, it appears that the α-syn SAA-CSF assay reflects an alpha synuclein related 19 

neurodegenerative process and can reliably distinguish synucleinopathies from other causes of 20 

parkinsonism/tremor with high specificity.  21 

 22 

PD subtyping is also a high priority for better selection of responders. For example, interventions 23 

that specifically target an aspect of disease pathophysiology associated with genetic 24 

abnormalities could be specifically tailored to these patients 415. Mutations in GBA1 confer a 25 

worse prognosis and therefore a trial enriched with these patients may potentially allow an earlier 26 

signal of efficacy. In parallel, enhancement of GCase activity may also have therapeutic benefits 27 

in PD patients without GBA1 mutations 416.  28 

 29 
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Features that strongly predict subsequent disease progression need to be carefully considered 1 

during treatment allocation. The randomisation process itself should lead to balancing of features 2 

between placebo and active treatment arms, however this can fail to achieve this in smaller sized 3 

trials. The application of a panel of biomarkers for example pro-inflammatory immune markers 4 

which predict faster progression 181 and reflect different aspects of disease-related pathways 5 

would be a useful approach to stratify patients into prognostic groups and potential responders to 6 

the treatment being tested which will in turn enable more efficient and cost-effective collection 7 

of data and increase the likelihood of detecting an effect.  8 

 9 

The most useful function of biomarkers is in the prediction that a change in any such biomarker 10 

reliably predicts slowing down of the neurodegenerative process that translates to reduction in 11 

disability accrual, and maintenance of function and quality of life. Towards this, the ratio of 12 

phosphorylated or oligomeric α-synuclein to total α-synuclein in CSF appears to be an 13 

encouraging fluid biomarker for disease progression. Technical challenges notwithstanding, 14 

measurement of one or both of these ratios may become routine practice in clinical trials of 15 

disease modifying agents, to further improve diagnostic precision at baseline, minimise 16 

difference between trial arms and monitor changes in response to the intervention. The selection 17 

of a single fluid biomarker is likely to be a lower sensitivity surrogate for disease progression 18 

than the use of a panel of biomarkers. The development of a poly-biomarker, analogous to a 19 

polygenic risk score will require careful modelling in large cohorts that have collected identical 20 

panels using agreed standardised operating procedures for their collection. 21 

 22 

There are several structural imaging techniques that seem to reliably track disease progression in 23 

PD, perhaps the most useful of which are neuromelanin or free water MRI. Whether these allow 24 

sufficient resolution to quantify changes over shorter time periods than needed for conventional 25 

clinical methods, requires further data. Functional or PET imaging may allow more rapid 26 

confirmation of target engagement in trials, and their routine use may depend on the putative 27 

mechanism of action of the intervention e.g. TSPO PET in a trial of a neuroinflammatory 28 

intervention. While stabilization of fluid, imaging or tissue biomarkers should mirror attenuation 29 
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of α-synuclein aggregation within the brain, it remains to be seen whether change in biomarker 1 

activity can reliably predict subsequent clinical disease progression. 2 

 3 

In terms of recommendations, during the design and conduct of a clinical trial of a disease 4 

modifying intervention in PD, we suggest; 5 

1. For broad interventions, investigators should routinely collect a biomarker (CSF, skin, 6 

blood) that can be used for an α-syn SAA as part of the trial inclusion criteria. Currently, 7 

SAA offers the highest specificity in distinguishing PD from controls or PD like 8 

conditions but it’s utility in differentiating PD from MSA requires further assay 9 

refinement. 10 

2. For precision interventions, investigators should consider whether the planned 11 

intervention targets an alternative process that can be defined by an alternative genetic 12 

marker (LRRK2, GBA1, Mitochondrial mutation), or measurable pathophysiological 13 

process (neuroinflammation, bioenergetics), irrespective of α-syn SAA. 14 

3. Investigators should consider incorporating such a biomarker within the trial inclusion 15 

criteria, while also ensuring the biomarker is appropriate for the stage of disease being 16 

studied. 17 

4. Where appropriate, the same biomarker might also be used to confirm target engagement 18 

of the intervention. 19 

5. Clinical outcome analyses may need to incorporate baseline differences in panels of wet 20 

biomarkers, as well as imaging differences between treatment groups predictive of more 21 

rapid progression. 22 

6. Investigators should formally evaluate the relationship between biomarker changes and 23 

predicting the clinical effect of the intervention. 24 

7. Consideration should be given at an early stage how biomarker data can be usefully 25 

shared/integrated to maximise learning across interventions. 26 

Until we have identified an agent that slows down clinical progression, it will be difficult to 27 

conclude the validity of any biomarker at predicting such disease modification. It appears as a 28 
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somewhat circular argument therefore, that we need success, before we can be confident in our 1 

tools designed to help achieve success. Faced with this challenge, the most practical path forward 2 

is to systematically collect specimens from participants in clinical trials for future research while 3 

also incorporating longitudinal measurement of encouraging biomarkers for continued 4 

comparison with clinical progression measures. This requires a degree of consensus in the PD 5 

trials community regarding standardised protocols for specimen collection and analysis. The 6 

Critical Path for Parkinson’s (CPP) consortium are helping to achieve this 417. Differences in the 7 

longitudinal change in biomarkers according to candidate interventions will undoubtedly help in 8 

the understanding of target engagement and help in the eventual prediction of long-term 9 

outcomes, and ultimately are likely to become reliable surrogate outcome measures.  10 

 11 

In conclusion, we should remain optimistic that the use of a combination of fluid, tissue and 12 

imaging biomarkers may become sufficient to reliably demonstrate disease modification. There 13 

is already a precedent that change in an imaging biomarker has been considered sufficient 14 

evidence, by some, to conclude disease modifying properties of aducanumab in Alzheimer’s 15 

disease 418. This decision has been controversial, and it is likely that a more robust conclusion in 16 

PD would only be reached once any combination of biomarkers has been comprehensively 17 

validated in relation to patient reports of clinical symptoms of relevance to their health and 18 

wellbeing. In the meantime, the best biomarker candidates can already likely improve the 19 

selection of participants and may contribute to early assessments of target engagement and of 20 

efficacy in counteracting pathophysiological mechanisms. An ongoing systematic process of 21 

confirming clinico-biomarker validity and utility is required. 22 
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 13 

Box 1 Fluid and tissue biomarker measurement techniques 14 
 15 
ELISA 16 

-target-specific antibodies bind to the sample proteins 17 
-secondary antibody linked to an enzyme recognises the matched antibodies 18 
-fluorescent reaction is created when exposed to a chemical substrate  19 
-amount of antigen present correlates to intensity of colour change 20 
-detection range inferior to other high-sensitivity techniques 21 

Luminex 22 
-beads conjugated with antibody against specific analyte present different colour codes  23 
-high-throughput screening 24 
-can measure up to 80 different proteins or RNA from a single microplate 25 

Mesoscale Discovery 26 
-high-throughput measurement of single or multiple targets 27 
-antibodies can be conjugated to generate electro chemiluminescent signals unlike ELISA 28 

Single Molecule Array 29 
-antibody-based ELISA and bead-based platform  30 
-antibody-coated bead binds to a single molecule and analysed separately  31 
-multiplexing of up to 11 analytes, high sensitivity, and wide detection range 32 

Proximity Extension Assay 33 
-DNA oligonucleotide tags linked to matched antibodies that both bind to target protein 34 
-antibodies come into proximity on binding, DNA duplex formed, sequence amplified  35 
-wide library of matched antibodies with high sensitivity and specificity for their targets 36 

SomaScan 37 
-Aptamers (short, single-stranded DNA or RNA molecules) bind target 38 
-quantified by microarrays or quantitative PCR  39 
-allows creation of library with high sensitivity for targets 40 

Single Molecule Counting 41 
-antibody–antigen sandwich complexes from either beads or plates 42 
-broken up and fluorescently labelled detection antibody counted by laser beam  43 
-allows for a high dynamic concentration range 44 

Mass spectrometry 45 
-measures mass-to-charge ratio of one or more molecules present 46 
-provide quantitative information about composition of complex protein samples 47 
-can also provide information about conformational properties 48 

Microscopy 49 
-used to examine to structure and formation of aggregates 50 
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-approaches include fluorescence (aggregates labelled with fluorescent probes) microscopy and electron microscopy (resolve 1 
oligomer structure at higher resolution)  2 

Seed Amplification Assays 3 
-aggregation assays that detect the presence of protein aggregates 4 
-Sample sonication and incubation with recombinant protein monomer 5 
-aggregate seeds template and induce aggregation of the excess protein monomers  6 
-reaction monitored by a thioflavin readout, aggregation curve characteristics recorded 7 

Extracellular vesicles protein measurement 8 
-released by cells, content represent central nervous system processes 9 
-precipitation to increase concentration and neuronal enrichment with immune capture 10 
-protein quantification with electrochemiluminescence (e.g. Mesoscale discovery)  11 

 12 

Table 1 Alpha-synuclein fluid and tissue biomarkers and their potential relevance to clinical trial design 13 
Biomarker Origin Differentiating 

PD from healthy 
controls  

Marker 

of 
disease 
severity 

Differentiating 

PD from 
atypical 
parkinsonism 

Predicting 

disease 
progression 

Surrogate 

for disease 
progression 

Total alpha 

synuclein  

CSF − + − − + 

CSF (Exosomes)  + +   

Plasma/Serum ++ − +   

Plasma/Serum 

(Exosomes) 

+++ ++ ++ + + 

Saliva +++ +    

Tears ++ − −   

Skin ++ +    

Ser-129p-α-syn  CSF ++ +++ ++  + 

Serum/Plasma + +  +  

Tissue/Intestine ++     

Skin +  ++   

Ratio of 

phosphorylated α-

syn to total α-Syn  

CSF +     

Saliva(Exosomes) +   −  

Tyrosine 
phosphorylated α-

syn  

CSF +     

Tyrosine nitrated α-

syn  

Serum +     

Oligomeric α-

synuclein  

CSF +++ ++ +   

Plasma/Serum/blood +     

Serum/plasma 

(Exosomes) 

+ + +   

Saliva +++ − +   

Saliva (Exosomes) + −    

Ratio of oligomeric 

to total α-syn  

CSF +++ + + + + 

Plasma/ Serum 
(Exosomes) 

+     

Saliva + −    

Red blood cells + − − −  

Oligomeric 
phosphorylated α-

syn species  

CSF +     

Plasma +     

α-syn seed 

amplification 

CSF +++ + +++   

Saliva  +    

GI biopsy +     

Skin ++     

Olfactory mucosa +  +   
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Grading approach adapted from 114. − = No effect (Also scored if negative in a meta-analysis); + = Effect in 1 study/inconsistent results across 1 

studies; ++ = Effect in 2-3 studies using single site cohort; +++ = Effect in ≥ 3 studies or multisite cohort (Also scored if positive in meta -2 
analysis). 3 

 4 

Table 2 Fluid and tissue biomarkers from aberrant pathways noted in PD and their potential relevance to clinical trial design 5 
Biomarker Origin Differentiating 

PD from 
healthy 

controls  

Marker of 
disease 
severity 

Differentiating 
PD from 
atypical 

parkinsonian 
disorders 

Predicting 
disease 
progression 

Surrogate for 
disease 
progression 

Neuroinflammation 

Glial Activation Markers 
(Ykl-40) 

CSF +++  +   

Glial Activation Markers 

(MCP-1) 

CSF +++ ++ +   

GFAP Serum/Plasma + ++  +  

T-cell subtype level/ratios Blood +++ +++ − +  

Neutrophil Lymphocyte 
Ratio 

Blood +++ +    

CRP Blood +++ +  +  

Interleukin levels  Blood +++ +++ − ++  

TNF Blood +++ +++  +  

Complement levels Blood − +  +  

Chemokine ligand 
5/RANTES 

Blood ++ ++    

Lysosomal dysfunction 

Glucocerebrosidase 

activity 

CSF ++ +  +  

Blood ++     

Β-hexosaminidase CSF +     

cathepsin D CSF +     

Glucosylceramide CSF −     

Plasma ++     

Serum −     

Mitochondrial dysfunction 

DJ-1 CSF + +    

Plasma/Serum − + +   

Peroxisome proliferator-
activated receptor γ 
coactivator 1α 

Blood ++ +    

Fibroblast growth factor 
21 

Serum −     

Growth differentiation 

factor 15 

Serum −     

Synaptic markers 

SNARE Complex Plasma/Serum 

(Exosome) 

+ −    

SNAP25 CSF +     

Neurogranin CSF +++ ++ − −  

Β-synuclein CSF − + −   

GAP43 CSF +     

Contactin-1 CSF +  +   

Pentraxins CSF + +  +  

Neurotransmitter levels CSF +  +   

Dopamine metabolites CSF +++ +++  + − 
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(HVA, DOPAC) Plasma ++ +    

Axonal damage (NfL) CSF − + +++ ++  

Plasma/Serum − +++ +++ +++  

Plasma/Serum 
(Exosome) 

− +    

Grading approach adapted from 114 − = No effect (Also scored if negative in a meta-analysis); + = Effect 1 study/inconsistent results across 1 
studies; ++= Effect in 2-3 studies using single site cohort; +++ = Effect in ≥ 3 studies or multisite cohort (Also scored if positive in meta -2 
analysis). 3 
 4 

Box 2 Biomarker Imaging Techniques 5 
 6 
Transcranial Sonography 7 

-ultrasound echogenicity measurement of brain tissues or structures through intact cranium -limited by lack of bone window in 8 
some subjects, and inter technician variability 9 

Structural MRI 10 
-quantification of brain structural change using regions-of-interest or whole-brain approaches 11 
-commonly used sequences include T1, T2, T2*, R2* (R2* = 1/T2*)-weighted, susceptibility-weighted, proton-density-weighted, fluid-12 
attenuated inversion recovery, and neuromelanin-sensitive approaches 13 

Proton Magnetic resonance spectroscopy 14 
-estimates relative concentrations of proton-containing metabolites in brain 15 
-metabolites commonly assessed include N-acetylaspartate, choline-containing compounds, myo-inositol, and creatine 16 

Functional MRI 17 
-evaluates neuronal activity by measuring transient variations in blood flow and variation correlation in functionally connect ed 18 
regions 19 
-utilized under task-based or under resting-state conditions 20 

Radiotracer imaging 21 
-Measures pre and post synaptic receptor and transporter density as well as glucose metabolism and microglial activation using  22 
different radiotracers 23 
-provides information on nigrostriatal dopaminergic, serotonergic and cholinergic system integrity, regional tissue glucose 24 
metabolism and activity and status of microglial-mediated inflammation 25 

 26 

Table 3 outlines the range of imaging biomarkers and their potential relevance to clinical trial design 27 
Imaging modality Differentiating PD 

from healthy 
controls   

Marker of 
disease 
severity 

Differentiating PD 
from atypical 
parkinsonian 

disorders 

Predicting 
disease 
progression 

Surrogate for 
disease 
progression 

Transcranial Sonography + − +  − 

T1 weighted structural MRI ++ +++ +++ ++ +++ 

Neuromelanin MRI + + +  ++ 

Iron Sensitive MRI +++ + ++ + +++ 

Diffusion MRI +++ ++ ++ ++ ++ 

MR Spectroscopy +++ ++ ++   

Functional MRI ++  +  + 

PET/SPECT   

Radionuclide      

a-syn − − −   

Dopaminergic +++ +++ − − +++ 

Non-dopaminergic ++ ++  ++  

Synaptic density ++ +   − 

Metabolic and network 

imaging 

     

Glucose metabolism +++ + ++ ++ + 

Neuroinflammation + + −   

Grading approach adapted from 114 − = No effect (Also scored if negative in a meta−analysis); +  =Effect 1 study/inconsistent results across 28 
studies; ++ = Effect in 2−3 studies using single site cohort; +++ Effect in ≥ 3 studies or multisite cohort (Also scored if positive in 29 
meta−analysis). 30 
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