96 research outputs found
Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells
<p>Abstract</p> <p>Background:</p> <p>BPA (bisphenol A or 2,2-bis(4-hydroxy-phenol)propane) is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound.</p> <p>Methods:</p> <p>Cell cycle, apoptosis and differentiation analyses; western blots.</p> <p>Results:</p> <p>BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA.</p> <p>Conclusion:</p> <p>BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.</p
Male breast cancer
Male breast cancer (MBC) is a rare disease representing less than 1% of all breast cancers (BC) and less than 1% of cancers in men. Age at presentation is mostly in the late 60s. MBC is recognized as an estrogen-driven disease, specifically related to hyperestrogenism. About 20% of MBC patients have family history for BC. Mutations in BRCA1 and, predominantly, BRCA2, account for approximately 10% of MBC cases.
Because of its rarity, MBC is often compared with female BC (FBC). Based on age-frequency distribution, age-specific incidence rate patterns and prognostic factors profiles, MBC is considered similar to late-onset, postmenopausal estrogen/progesterone receptor positive (ER+/PR+) FBC. However, clinical and pathological characteristics of MBC do not exactly overlap FBC. Compared with FBC, MBC has been reported to occur later in life, present at a higher stage, and display lower histologic grade, with a higher proportion of ER+ and PR+ tumors.
Although rare, MBC remains a substantial cause for morbidity and mortality in men, probably because of its occurrence in advanced age and delayed diagnosis. Diagnosis and treatment of MBC generally is similar to that of FBC. Men tend to be treated with mastectomy rather than breast-conserving surgery. The backbone of adjuvant therapy or palliative treatment for advanced disease is endocrine, mostly tamoxifen.
Use of FBC-based therapy led to the observation that treatment outcomes for MBC are worse and that survival rates for MBC do not improve like FBC. These different outcomes may suggest a non-appropriate utilization of treatments and that different underlying pathogenetic mechanisms may exist between male and female BC
Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium
The Wide-field Spectroscopic Telescope (WST) Science White Paper
The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of
spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat
Laboratory markers in ulcerative colitis: Current insights and future advances.
Ulcerative colitis (UC) and Crohn’s disease (CD) are the major forms of inflammatory bowel diseases (IBD) in man. Despite some common features, these forms can be distinguished by different genetic predisposition, risk factors and clinical, endoscopic and histological characteristics. The aetiology of both CD and UC remains unknown, but several evidences suggest that CD and perhaps UC are due to an excessive immune response directed against normal constituents of the intestinal bacterial flora. Tests sometimes invasive are routine for the diagnosis and care of patients with IBD. Diagnosis of UC is based on clinical symptoms combined with radiological and endoscopic investigations. The employment of non-invasive biomarkers is needed. These biomarkers have the potential to avoid invasive diagnostic tests that may result in discomfort and potential complications. The ability to determine the type, severity, prognosis and response to therapy of UC, using biomarkers has long been a goal of clinical researchers. We describe the biomarkers assessed in UC, with special reference to acute-phase proteins and serologic markers and thereafter, we describe the new biological markers and the biological markers could be developed in the future: (1) serum markers of acute phase response: The laboratory tests most used to measure the acute-phase proteins in clinical practice are the serum concentration of C-reactive protein and the erythrocyte sedimentation rate. Other biomarkers of inflammation in UC include platelet count, leukocyte count, and serum albumin and serum orosomucoid concentrations; (2) serologic markers/antibodies: In the last decades serological and immunologic biomarkers have been studied extensively in immunology and have been used in clinical practice to detect specific pathologies. In UC, the presence of these antibodies can aid as surrogate markers for the aberrant host immune response; and (3) future biomarkers: The development of biomarkers in UC will be very important in the future. The progress of molecular biology tools (microarrays, proteomics and nanotechnology) have revolutionised the field of the biomarker discovery. The advances in bioinformatics coupled with cross-disciplinary collaborations have greatly enhanced our ability to retrieve, characterize and analyse large amounts of data generated by the technological advances. The techniques available for biomarkers development are genomics (single nucleotide polymorphism genotyping, pharmacogenetics and gene expression analyses) and proteomics. In the future, the addition of new serological markers will add significant benefit. Correlating serologic markers with genotypes and clinical phenotypes should enhance our understanding of pathophysiology of UC
- …