6 research outputs found

    Characterization of eucalyptus clones subject to wind damage

    No full text
    <div><p>Abstract: The objective of this work was to test a new methodology to assess the resistance of trees to wind damage and determine the characteristics that increase clone resistance to winds. Tree resistance to breakage, basic density, ultrastructure, anatomy, mechanical properties, and wood growth stress have been evaluated in seven Eucalyptus grandis × Eucalyptus urophylla clones, collected from a region with a high incidence of wind damage. The Pearson correlation coefficient between the tree resistance to breakage and the ratio between the area damaged by the winds and the total planted area was -0.839, showing the efficiency of the methodology adopted and that high breaking strength results in a smaller area affected by wind damage. Trees with a high basic density, cell wall fraction, modulus of elasticity of the middle lamella and fibers, fiber hardness, modulus of rupture, growth stress and low microfibril angle and height and width of the rays showed greater resistance to wind damage. Therefore, the selection of clones with these features may reduce the incidence of damage by winds in Eucalyptus plantations.</p></div

    Methane and nitrous oxide fluxes in relation to vegetation covers and bird activity in ice-free soils of Rip Point, Nelson Island, Antarctica

    No full text
    This study aimed to quantify the nitrous oxide (N2O) and methane (CH4) fluxes at sites with different vegetation covers and where bird activity was present or absent using the static chamber method, on Rip Point, Nelson Island, maritime Antarctic. The sites were soils covered by Sanionia uncinata, lichens, Prasiola crispa, Deschampsia antarctica and bare soil. Seabirds used the P. crispa and D. antarctica sites as nesting areas. Soil mineral N contents, air and soil temperature and water-filled pore space were measured, and the content of total organic C and particulate organic C, total N, bulk density and texture were determined to identify controlling variables of the gas emissions. The N2O and CH4 flux rates were low for all sampling events. Mean N2O flux rates ranged from 0.11±1.93 up to 21.25±22.14 µg N2O m−2 h−1 for the soils under lichen and P. crispa cover, respectively. For the CH4 fluxes, only the P. crispa site showed a low positive mean (0.47±3.61 µg CH4 m−2 h−1). The bare soil showed the greatest absorption of CH4 (−11.92±5.7 µg CH4 m−2 h−1), probably favoured by the coarse soil texture. Bare soil and S. uncinata sites had N2O accumulated emissions close to zero. Net CH4 accumulated emission was observed only at the P. crispa site, which was correlated with NH4+ (p<0.001). These results indicate that seabird activity influences N2O and CH4 soil fluxes, while vegetation has little influence, and bare soil areas in maritime Antarctica could be greenhouse gas sinks

    Escravos do Atlântico equatorial: tráfico negreiro para o Estado do Maranhão e Pará (século XVII e início do século XVIII)

    No full text
    corecore