206 research outputs found

    Ansiedade Social na Infância e Pré-Adolescência: Adaptação para o Português de Portugal da SASC-R

    Get PDF
    A Escala de Ansiedade Social para Crianças (forma revista) - SASC-R destina-se a avaliar as experiências de ansiedade social e de evitamento das crianças e pré-adolescentes no contexto das relações com os pares. Neste estudo, pretende-se validar para a população portuguesa a SASC-R, utilizando a estrutura proposta pelos autores da escala original, através da análise fatorial confirmatória (AFC). Procedemos à aplicação da SASC-R numa amostra de 486 crianças entre os 9 e os 15 anos. Os resultados indicam que a escala replica os fatores da versão original, possui boa consistência interna e uma validade de constructo bastante satisfatória. Este estudo sugere que a SASC-R é uma escala útil na avaliação da ansiedade social em crianças.The Social Anxiety Scale for Children (revised form) - SASC-R evaluates the experience of social anxiety and avoidance felt by children and pre-adolescents in the context of relationship with their peers. This study aims to validate the Portuguese version of the SASC-R by confirmatory factor analysis using the structure proposed by the authors of the original scale. In a survey donewith 486 children between the ages of nine and 15 years, the results show that the scale reproduces the original factors, has a good internal consistency and a quite satisfactory construct validity. This study suggests that the SASC-R is a useful scale on the evaluation of social anxiety among children

    Cluster Masses Accounting for Structure along the Line of Sight

    Full text link
    Weak gravitational lensing of background galaxies by foreground clusters offers an excellent opportunity to measure cluster masses directly without using gas as a probe. One source of noise which seems difficult to avoid is large scale structure along the line of sight. Here I show that, by using standard map-making techniques, one can minimize the deleterious effects of this noise. The resulting uncertainties on cluster masses are significantly smaller than when large scale structure is not properly accounted for, although still larger than if it was absent altogether.Comment: 5 pages, 5 figure

    Ising Spins on Thin Graphs

    Get PDF
    The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic couplings the replica trick gives some evidence for a spin glass phase. In this paper we investigate both the ferromagnetic and antiferromagnetic models with the aid of simulations. We confirm the Bethe lattice values of the critical points for the ferromagnetic model on ϕ3\phi^3 and ϕ4\phi^4 graphs and examine the putative spin glass phase in the antiferromagnetic model by looking at the overlap between replicas in a quenched ensemble of graphs. We also compare the Ising results with those for higher state Potts models and Ising models on ``fat'' graphs, such as those used in 2D gravity simulations.Comment: LaTeX 13 pages + 9 postscript figures, COLO-HEP-340, LPTHE-Orsay-94-6

    Glassy dynamics in granular compaction: sand on random graphs

    Full text link
    We discuss the use of a ferromagnetic spin model on a random graph to model granular compaction. A multi-spin interaction is used to capture the competition between local and global satisfaction of constraints characteristic for geometric frustration. We define an athermal dynamics designed to model repeated taps of a given strength. Amplitude cycling and the effect of permanently constraining a subset of the spins at a given amplitude is discussed. Finally we check the validity of Edwards' hypothesis for the athermal tapping dynamics.Comment: 13 pages Revtex, minor changes, to appear in PR

    Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice

    Full text link
    At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg antiferromagnet on a simple cubic lattice with competing first and second neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave theory. We find existence of two phases: a two sublattice Neel phase for small J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain the sublattice magnetizations and ground state energies for the two phases and find that there exists a first order phase transition from the AF-phase to the CAF-phase at the critical transition point, pc = 0.28. Our results for the value of pc are in excellent agreement with results from Monte-Carlo simulations and variational spin wave theory. We also show that the quartic 1/S corrections due spin-wave interactions enhance the sublattice magnetization in both the phases which causes the intermediate paramagnetic phase predicted from linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie

    Perturbation evolution with a non-minimally coupled scalar field

    Get PDF
    We recently proposed a simple dilaton-derived quintessence model in which the scalar field was non-minimally coupled to cold dark matter, but not to `visible' matter. Such couplings can be attributed to the dilaton in the low energy limit of string theory, beyond tree level. In this paper we discuss the implications of such a model on structure formation, looking at its impact on matter perturbations and CMB anisotropies. We find that the model only deviates from Λ\LambdaCDM and minimally coupled theories at late times, and is well fitted to current observational data. The signature left by the coupling, when it breaks degeneracy at late times, presents a valuable opportunity to constrain non-minimal couplings given the wealth of new observational data promised in the near future.Comment: Version appearing in Physical Review D. 10 pages, 9 figs. Comparison with SN1a and projected MAP results, and appendix adde

    CMB-Cluster Lensing

    Full text link
    Clusters of galaxies are powerful cosmological probes, particularly if their masses can be determined. One possibility for mass determination is to study the cosmic microwave background (CMB) on small angular scales and observe deviations from a pure gradient due to lensing of massive clusters. I show that, neglecting contamination, this technique has the power to determine cluster masses very accurately, in agreement with estimates by Seljak and Zaldarriaga (1999). However, the intrinsic small scale structure of the CMB significantly degrades this power. The resulting mass constraints are useless unless one imposes a prior on the concentration parameter c. With even a modest prior on c, an ambitious CMB experiment (0.5' resolution and 1 microK per pixel) could determine masses of high redshift (z>0.5) clusters with ~ 30% accuracy.Comment: 17 pages, 10 figure
    corecore