8 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Haptoglobin and CCR2 receptor expression in ovarian cancer cells that were exposed to ascitic fluid: Exploring a new role of haptoglobin in the tumoral microenvironment

    No full text
    <div><p>Haptoglobin (Hp) is an acute-phase protein that is produced by the liver to capture the iron that is present in the blood circulation, thus avoiding its accumulation in the blood. Moreover, Hp has been detected in a wide variety of tissues, in which it performs various functions. In addition, this protein is considered a potential biomarker in many diseases, such as cancer, including ovarian carcinoma; however, its participation in the cancerous processes has not yet been determined. The objective of this work was to demonstrate the expression of Hp and its receptor CCR2 in the ovarian cancer cells and its possible involvement in the process of cell migration through changes in the rearrangement of the actin cytoskeleton using western blot and wound-healing assays and confirming by confocal microscopy. Ovarian cancer cells express both Hp and its receptor CCR2 but only after exposure to ascitic fluid, inducing moderated cell migration. However, when the cells are exposed to exogenous Hp, the expression of CCR2 is induced together with drastic changes in the actin cytoskeleton rearrangement. At the same time, Hp induced cell migration in a much more efficient manner than did ascitic fluid. These effects were blocked when the CCR2 synthetic antagonist RS102895 was used to pretreat the cells. These results suggest that Hp-induced changes in the cell morphology, actin cytoskeleton structure, and migration ability of tumor cells, is possibly “preparing” these cells for the potential induction of the metastatic phenotype.</p></div

    Biological physics in México

    No full text

    Genomic-based breeding for climate-smart peach varieties

    No full text
    Improving the performance of peach varieties in the context of climate change requires multiple approaches. Not only will climate change alter plant phenology, but it will also drive negative effects of several biotic and abiotic stressors. The challenge is to improve adaptation of varieties to a changing environment, while maintaining organoleptic qualities of the fruit. This chapter focuses on the progress in genomics-assisted breeding in peach to break barriers in conventional breeding. Breeding climate-smart (CS) peach trees requires the identification of CS traits used in the adaptation to high levels of temperature, CO2, water deprivation and biotic stress. Relevant CS traits, such as those that control flowering time (chilling and heat requirements), biotic and abiotic stress tolerance (pests and diseases; water-nutrient efficiency), require prioritization. Here, we review classical mapping and breeding of peach varieties, the progress and limitations of the used of marker-assisted selection and breeding (MAS and MAB, respectively) in expression of traits, such as fruit quality and stress tolerance, and describe the rationale for the use of molecular breeding.EEA San PedroFil: Gogorcena Aoiz, Yolanda. Consejo Superior de Investigaciones Científicas (CSIC). Estación Experimental Aula Dei; EspañaFil: Sánchez, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Moreno-Vázquez Santiago. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas; EspañaFil: Pérez, Salvador. Centro de Recursos Geneticos y Mejoramiento de Prunus; MéxicoFil: Ksouri, Najla. Consejo Superior de Investigaciones Científicas (CSIC). Estación Experimental Aula Dei; Españ

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    No full text
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    Retinal Glia

    No full text
    corecore