143 research outputs found

    Differentiability of solutions of stationary Fokker–Planck–Kolmogorov equations with respect to a parameter

    Get PDF
    We obtain sufficient conditions for the differentiability of solutions to stationary Fokker-Planck-Kolmogorov equations with respect to a parameter. In particular, this gives conditions for the differentiability of stationary distributions of diffusion processes with respect to a parameter

    Construction of Lp\mathcal L^p-strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions

    Full text link
    We provide a general construction scheme for Lp\mathcal L^p-strong Feller processes on locally compact separable metric spaces. Starting from a regular Dirichlet form and specified regularity assumptions, we construct an associated semigroup and resolvents of kernels having the Lp\mathcal L^p-strong Feller property. They allow us to construct a process which solves the corresponding martingale problem for all starting points from a known set, namely the set where the regularity assumptions hold. We apply this result to construct elliptic diffusions having locally Lipschitz matrix coefficients and singular drifts on general open sets with absorption at the boundary. In this application elliptic regularity results imply the desired regularity assumptions

    Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation

    Get PDF
    We study a quasilinear parabolic Cauchy problem with a cumulative distribution function on the real line as an initial condition. We call 'probabilistic solution' a weak solution which remains a cumulative distribution function at all times. We prove the uniqueness of such a solution and we deduce the existence from a propagation of chaos result on a system of scalar diffusion processes, the interactions of which only depend on their ranking. We then investigate the long time behaviour of the solution. Using a probabilistic argument and under weak assumptions, we show that the flow of the Wasserstein distance between two solutions is contractive. Under more stringent conditions ensuring the regularity of the probabilistic solutions, we finally derive an explicit formula for the time derivative of the flow and we deduce the convergence of solutions to equilibrium.Comment: Stochastic partial differential equations: analysis and computations (2013) http://dx.doi.org/10.1007/s40072-013-0014-

    Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below

    Get PDF
    We prove existence and uniqueness of optimal maps on RCD(K,N)RCD^*(K,N) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation. \ua9 2015, Mathematica Josephina, Inc

    Transition Densities and Traces for Invariant Feller Processes on Compact Symmetric Spaces

    Get PDF
    We find necessary and sufficient conditions for a finite K–bi–invariant measure on a compact Gelfand pair (G, K) to have a square–integrable density. For convolution semigroups, this is equivalent to having a continuous density in positive time. When (G, K) is a compact Riemannian symmetric pair, we study the induced transition density for G–invariant Feller processes on the symmetric space X = G/K. These are obtained as projections of K–bi–invariant L´evy processes on G, whose laws form a convolution semigroup. We obtain a Fourier series expansion for the density, in terms of spherical functions, where the spectrum is described by Gangolli’s L´evy–Khintchine formula. The density of returns to any given point on X is given by the trace of the transition semigroup, and for subordinated Brownian motion, we can calculate the short time asymptotics of this quantity using recent work of Ba˜nuelos and Baudoin. In the case of the sphere, there is an interesting connection with the Funk–Hecke theorem
    corecore