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Abstract
The paper is devoted to the study of the measure-driven differential inclusions
dx(t) ∈ G(t, x(t))dμ(t), x(0) = x0 for arbitrary finite Borel measure μ. This type of results
allows one to treat in a similar manner differential and difference inclusions, as well as
impulsive problems and therefore to study the evolution of hybrid systems with very
complex (including Zeno) behavior. Our method is based on viewing the Borel
measures as Lebesgue-Stieltjes measures. We thus obtain, under very general
assumptions, the existence of regulated or bounded variation solutions of the
considered problem and we indicate some advantages of our approach.
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Keywords: measure-driven inclusion; Lebesgue-Stieltjes measure; hybrid system

1 Introduction
Let us consider the following problem:

dx(t) ∈ G
(
t,x(t)

)
dμ(t), ()

x() = x, ()

where G : [, ] × R
d → P(Rd) is a closed convex-valued multifunction and μ is a pos-

itive regular Borel measure. This kind of problems covers some well-known cases like
usual differential inclusions (when μ is the Lebesgue measure), difference inclusions (for
discrete measure μ) and some impulsive multivalued problems (in the case where the
measure μ can be decomposed as a sum of the Lebesgue measure and a finite sum of
Dirac measures-see [–]). There are several approaches for the above problems (direct
methods or time scale analysis, for instance) but our method, based on Lebesgue-Stieltjes
integration, seems to be the most natural.
This kind of results has a long history and is well motivated. A very interesting and

well-illustrated course on hybrid inclusions can be found in [], for instance. Neverthe-
less, several different approaches, different solutions and many applications for measure-
driven equations or inclusions can also be found in the literature. Let us note the paper by
Moreau []. It is necessary to mention at least some basic papers by Code and Loewen [],
Goebel and Teel [], Sesekin and Fetisova [], Silva and Vinter [], Aubin [, ], Ahmed
[], Pereira, Silva and Oliveira [, ] and recently by Goncharova and Staritsyn [], Fil-
ippova [], Lygeros, Quincampoix and Rzeżuchowski [] and Leine-van de Wouw [].
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Note that in this theory discontinuous functions are usually considered as solutions, which
means that we can expect some paradoxes. In particular, different functions can serve as
solutions for the same problem in differentmeanings (cf. []). Thuswe stress that a crucial
aspect of this theory is to fix the definition for the concept of a solution for ().
We concentrate on two aspects ofmentioned papers: we relax the assumptions onμ and

on G by imposing some conditions related to the optimal control theory and we reduce
the general problem by working with Lebesgue-Stieltjes integral equations and utilizing
their methods and results.
It should be also noted that our results lead in a natural way to some existence theorems

for differential and difference inclusions or impulsive problems (for particular measures).
Moreover, as claimed in [], measure-driven differential inclusions provide a convenient
framework for formulating optimal control problems for both conventional and impulse
controls.
Let us point out that in the context of differential equations this approach has been

known for many years. To the best of our knowledge the first equation with a measure as
a coefficient was considered by Kronig and Penney in  [] and as an integral problem
by Atkinson [] in  - in the context of the Riemann-Stieltjes integral. The systematic
study for measure-perturbed problems started in the s. It is necessary to mention
some basic papers by Sharma [], Shendge and Joshi [] or Dhage and Bellale []. The
method via integral equations for some differential equations (with the Perron-Stieltjes
integral) were continued in a systematic way by Schwabik, Tvrdý and Vejvoda [] in ;
then some cases have been studied by Wyderka [, ], see also []. There is still a
growing number of papers dealing with measure differential equations ([] or [], for
instance).
To end the introductory section, we remark that in the considered case there are some

difficulties. One of these lies in the lack of natural assumptions implying the existence of
suitable integrals (namely, for discontinuous functions the Riemann-Stieltjes integral with
respect to bounded variation functions might not be well-defined) and then the question
of the chosen definition of the concept of solution. Another problem is how to find (or
at least approximate) this solution. For measure-driven differential equations there are
some satisfactory answers (cf. [, ] or [, ] for hybrid systems, for instance). For
differential inclusions the situation ismore complicated, aswill be clarified inwhat follows.
We will also focus on some aspects of this theory, which are related to unification of many
multivalued problems (including continuous, discrete, and impulsive systems).

2 Miscellaneous results frommeasure theory
Unlike in the case of usual differential inclusions, the measure theory and the theory of
Lebesgue-Stieltjes integrals form the basic tools of our paper. In order to make the paper
self-contained we recall all necessary results from these theories.
Let μ and ν be two positive (countably additive) measures on an arbitrary σ -algebra A

of a space T . Recall that:
(i) ν is said to be absolutely continuous with respect to μ if ν(A) =  whenever

μ(A) = .
(ii) ν and μ are said to be mutually singular if there exists a measurable set A with

μ(A) = ν(T \A) = .

http://www.advancesindifferenceequations.com/content/2014/1/56


Cichoń and Satco Advances in Difference Equations 2014, 2014:56 Page 3 of 18
http://www.advancesindifferenceequations.com/content/2014/1/56

Recall also of the following notions:
(iii) A set E ∈A is an atom of the measure μ if μ(E) >  and each measurable subset F

of E has either μ(F) =  or μ(F) = μ(E).
(iv) A measure is called nonatomic (or diffuse, in probability theory) if it has no atoms.
(v) We shall say that a measure is purely atomic if every measurable set of positive

measure contains an atom.
Two atoms E and E are said to be non-equivalent if d(E,E) = μ(E �E) > . In this
case μ(E ∩ E) = . Any σ -finite measure has at most a countable number of pairwise
non-equivalent atoms (e.g. [, p.]).
It is well known (the Lebesgue decomposition theorem) that if the measures μ and ν

are σ -finite, then ν can be written, in a unique way, as a sum of a measure νac which is
absolutely continuous with respect to μ and a measure νs singular with respect to μ:

ν = νac + νs.

In particular, if ν is nonatomic (as is the case of the Lebesgue measure) then νac is also
nonatomic. Moreover, the singular part can be (uniquely again) decomposed in a sum of
a purely atomic and a nonatomic measure (the Cantor part) (see [], for instance):

νs = νns + νpa.

Thus themeasure ν can be decomposed as a sum of threemutually singular measures: the
Lebesgue part, the Cantor part and the singular (or jump) part, cf. [, ]

ν = νac + νns + νs.

We are interested in using Borel measures to solve the problem announced in the Intro-
duction. The classical Riesz Representation Theorem characterizes the finite regular Borel
measures on a compact metrizable space as linear continuous functionals on the space of
real continuous functions. This characterization is used by most of the authors studying
measure-driven equations, e.g. [, ].
We prefer here another approach, based on Lebesgue-Stieltjes integration. First of all,

recall ([, p.] or [, p.]) that any finite Borel measure on a Polish space (in par-
ticular on the unit interval of the real line) is regular. It was shown that every finite Borel
measure on the real line agrees with some Lebesgue-Stieltjes measure restricted to the
class of Borel sets. More precisely we have:

Theorem  [, Theorem .] Let μ be a Borel measure on R with μ(B) < ∞ for every
bounded Borel set B. Then there exists a nondecreasing, right-continuous function F :R →
R such that μ(B) = μF (B) for any Borel set B.

HereμF denotes the Lebesgue-Stieltjesmeasurewith distribution function F .Moreover,
it was shown (see [, pp.-]) that:
• The measure is nonatomic if and only if F is continuous.
• The measure is absolutely continuous with respect to the Lebesgue measure if and
only if F is absolutely continuous.

http://www.advancesindifferenceequations.com/content/2014/1/56
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• The measure is nonatomic and singular with respect to the Lebesgue measure if and
only if F is a singular function.

Recall that a singular function is a function which is continuous and nondecreasing on
a real interval and has the derivative  except for a set of zero Lebesgue measure. There
exist non-constant singular functions on the unit interval (e.g. [, p.]), examples of
such functions being in general constructed using the Cantor set.
Concerning the atoms of Lebesgue-Stieltjesmeasures, it can be seen in [, p.] or [,

X] that each atom E contains a singleton a ∈ E for which μF (E) = μF ({a}). Comparing
to definition (v) above, this explains why in some references (such as []) a measure μ is
called purely atomic if there exists a countable set A such that the outer measure of each
singleton {a}, a ∈ A is strictly positive and the outer measure of the complementary of A
is . Obviously, if each singleton is measurable, then the measure takes the place of the
outer measure in the previous sentence.
Then any Lebesgue-Stieltjes measure μF (associated with F) may be split into a sum of

three measures: discrete, absolutely continuous and singular ones.
As we will prove our results via Lebesgue-Stieltjes measures, it is worthwhile to recall

some basic properties of Lebesgue-Stieltjes integrals; they are consequences of Proposi-
tion .. in [], where the functions are real-valued and the integral under consider-
ation is the Perron-Stieltjes one (which is even more general than the Lebesgue-Stieltjes
integral). For generalized integral equations, investigated also independently of our moti-
vations, the class of regulated functions plays a major role. Solutions for integral problems
involving Lebesgue-Stieltjes or Perron-Stieltjes integrals should be investigated outside
the space of continuous functions or the spaces of functions with bounded variation. It
was clarified in [] that the space of regulated functions is the best choice for the space
of solutions.
Since the notion of regulated functions has sometimes different meanings, we need to

describe this class of functions.

Definition  A function F : [, ]→R is said to be regulated if there exist the limits F(t+)
and F(s–) for all points t ∈ [, ) and s ∈ (, ].

It is well known that the set of discontinuities for a regulated function is at most
countable, but such a function need not be of bounded variation. Moreover, a function
F : [, ] → R is regulated if and only if it is a uniform limit of a sequence of finite step
functions. The following property of the indefinite Kurzweil-Stieltjes integral implies that
solutions of measure differential equations are regulated functions. This can explain when
our solutions are either of bounded variation or regulated.

Proposition  [, Proposition ..] Let F : [, ] → R and g : [, ] → R
d be such that

the Lebesgue-Stieltjes
∫ 
 g(s)dF(s) exists. Then:

(i) If F is regulated, then so is the primitive h : [, ]→R
d , h(t) =

∫ t
 g(s)dF(s) and for

every t ∈ [, ],

h
(
t+

)
– h(t) = g(t)

[
F
(
t+

)
– F(t)

]
and h(t) – h

(
t–

)
= g(t)

[
F(t) – F

(
t–

)]
.

(ii) If F is of bounded variation and g is bounded, then h is also of bounded variation.

http://www.advancesindifferenceequations.com/content/2014/1/56
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By χA we will denote the characteristic function of the set A ⊂ R. We also need some
preliminary facts from set-valued analysis.
The family of all nonempty closed (respectively, nonempty closed convex) subsets ofRd

will be denoted by Pc(Rd) (respectively, Pcc(Rd)). By the distance between a point x ∈ R
d

and a set A ⊂R
d we mean

d(x,A) = inf
{‖x – a‖ : a ∈ A

}
.

Let us recall that a multifunction � : [, ] → Pc(Rd) is said to be (Hausdorff-) upper
semicontinuous, shortly usc, at a point t ∈ [, ] if for every ε >  there exists δε > 
such that the excess of �(t) over �(t) (in the sense of Hausdorff) is less than ε when-
ever |t – t| < δε . Otherwise stated,

�(t)⊂ �(t) + εB,

where B is the unit ball of Rd . In the obvious way we call a multifunction usc when it is
usc at each point t ∈ [, ].

3 Main results
The solutions of usual differential problems are at least continuous, but if we look at, for
example, a big part of the class of hybrid systems, this is not available. In our problems, by
considering inclusions driven by general Borel measures, it cannot be expected to obtain
continuous solutions. This is the reason for which in the following definition the using of
the left limit:

x
(
t–

)
= lim

τ→t,τ<t
x(τ )

is crucial. Indeed, as pointed out in an example in [], taking the integral on a closed,
resp. open interval (which is equivalent to integrating on a closed interval the left limit of
the function) leads to completely different solutions.

Definition  A solution of the problem () is a function x : [, ] → R
d for which there

exists a μ-integrable function g : [, ] →R
d such that

x(t) = x +
∫ t


g(s)dμ(s), ∀t ∈ [, ]

and

g(t) ∈G
(
t,x

(
t–

))
μ-a.e.

Let us note that for discontinuous solutions there is always a problem how to define
a solution in the points of discontinuity. A very interesting survey on the topic can be
found in []. We need to remark that distinct definitions of solutions can lead to distinct
solutions []! The existence and uniqueness of solutions of considered problems depend
on the conditions for μ and g . Due to the existence of atoms for the measure μ there is a
question about the uniqueness of solutions for a (possibly) discontinuous function g . The

http://www.advancesindifferenceequations.com/content/2014/1/56
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explicit scheme �x(t) = x(t) – x(t–) = g(x(t–)) is a natural choice for physical systems and
we will follow this idea. This allows us to fill the gap in this theory. If we compare our
result with some earlier ones we need to recall that for purely atomic measureμ the above
condition of integrability means that the series

∑
k g(tk)μ{tk} is finite (where tk is a set of

atoms for μ) - cf. [, ], for instance.
Let us present some auxiliary result:

Lemma  Let � : Rd → Pcc(Rd) be an usc multifunction and (xn)n be a sequence that
converges to x ∈ R

d . Suppose that there exists a constant M >  such that d(,�(xn)) ≤ M
for every n ∈N. Then

d
(
,�(x)

) ≤M.

Proof By the upper semicontinuity of � it follows that d(,�(·)) is lower semicontinuous
(see [, Lemma ..]). Therefore

d
(
,�(x)

) ≤ lim inf
n→∞ d

(
,�(xn)

) ≤M. �

We are ready to present our first result for measure-driven differential inclusions () for
a general class of finite Borel measures. Let us note that the presented theorem is intended
to unify and to extend the earlier ones. We not only formulate an existence result, but we
also include amethod how to find this solution as a limit of some approximations.We refer
the reader to [] for the discussion, some motivations and examples for measure-driven
problems.

Theorem  Let μ be a finite Borel measure on [, ] and let G : [, ] × R
d → Pcc(Rd)

satisfy the following hypotheses:
() G(·, ·) is product Borel measurable,
() G(t, ·) is usc for every t ∈ [, ],
() there exists a μ-integrable functionM : [, ] →R+ such that

d
(
,G(t, y)

) ≤M(t), ∀t ∈ [, ], y ∈R
d.

Then there exists at least one solution for the measure-driven differential problem ().

Proof Our proof is based on an iteration procedure. More precisely, we construct a se-
quence of approximate solutions (being regulated functions) which is shown to have a
convergent subsequence due to some compactness properties.
So, let x(t) = x for t ∈ [, ]. Suppose then that we have already constructed a regulated

(bounded variation (BV)) function xn on [, ] and choose xn+ by following a scheme that
is described in the sequel.
By our hypotheses onGwe ensure that the functionG is superpositionally Borelmeasur-

able []. Since xn is regulated (BV), there exists xn(t–) at every point t. It can be obtained
as xn(t–) = limm→∞ xn(t–τm), where (τm)m is a sequence of positive numbers converging to
 (such that t– τm ∈ [, ]). Therefore the function t 
→ xn(t–) is measurable as a pointwise
limit of a sequence of measurable functions and then the multifunction t 
→G(t,xn(t–)) is
Borel measurable too.

http://www.advancesindifferenceequations.com/content/2014/1/56
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ByTheorem . in [] (cf. alsoChapter III in []) it follows that t 
→ d(,G(t,xn(t–))) is
Borel measurable. Moreover, by hypothesis () and Lemma , it is bounded byM(t). Since
the values ofG are closed and convex we are able to find a Borel measurable selection gn(·)
of G(·,xn(·–)) such that

∥∥gn(t)∥∥ = d
(
,G

(
t,xn

(
t–

)))
for every t ∈ [, ]

(in our finite-dimensional case, it is unique). Define now

xn+(t) = x +
∫ t


gn(s)dμ(s), ∀t ∈ [, ].

As it was presented in the preliminary part of the paper (Theorem ), the measure μ is, in
fact, a Lebesgue-Stieltjes measure with respect to a BV, right-continuous function F . Thus
the previous integral should be understood in the sense of

∫ t
 g

n(s)dμF (s) i.e. as a Lebesgue-
Stieltjes integral. This integral is well defined since the selection gn is Borel measurable, F
is of bounded variation and, as said before, bounded byM(t). Moreover, by Proposition ,
xn+ is a regulated function.
The function F is of bounded variation and right-continuous, therefore it has at most

countable points of left discontinuity. Let A = {tk : k ∈ N} be the set of its discontinuity
points.
As the sequence (gn)n is pointwise bounded, we can extract, by a diagonal procedure,

a subsequence (not re-labeled) for which

gn(tk) → g̃(tk), ∀k ∈ N. ()

As a pointwise limit of measurable functions g̃ is measurable on A. By (), using the
Lebesgue dominated convergence result Theorem .. in [], we obtain for every t ∈
[, ]∫

[,t]∩A
gn(s)dμF (s)→

∫
[,t]∩A

g̃(s)dμF (s).

At the same time, the sequence (gnχ[,]\A)n is uniformly integrable in L([, ]\A,μF ) and
bounded. Whence it is relatively weakly compact in the space L([, ] \ A,μF ) (cf. []).
It follows that we can extract a subsequence (denoted in the same way, for the sake of
convenience) which converges in the weak topology of L([, ] \A,μF ) to some function
h ∈ L([, ] \A,μF ). In particular,∫

[,t]\A
gn(s)dμF (s) →

∫
[,t]\A

h(s)dμF (s), ∀t ∈ [, ]. ()

Denoting now by

g = g̃χA + hχ[,]\A,

we get∫ t


gn(s)dμF (s)→

∫ t


g(s)dμF (s), ∀t ∈ [, ].

http://www.advancesindifferenceequations.com/content/2014/1/56
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Then the function defined by

x(t) = x +
∫ t


g(s)dμF (s), ∀t ∈ [, ],

has the property that the subsequence of (xn)n is pointwise convergent to x.
We assert that the function x obtained by this procedure is a solution to our problem.

For this purpose, it suffices to prove that

g(s) ∈G
(
s,x

(
s–

))
μF-a.e.

The first step in this direction is to show that

lim
n→∞xn

(
t–

)
= x

(
t–

)
μF-a.e.

For any t ∈ [, ] \A, by Proposition ,

xn(t) – xn
(
t–

)
= gn–(t)

[
F(t) – F

(
t–

)]
= 

and

x(t) – x
(
t–

)
= g(t)

[
F(t) – F

(
t–

)]
= ,

therefore

xn
(
t–

)
= xn(t)→ x(t) = x

(
t–

)
.

Let now t be an element of A. In this case,

xn(t) – xn
(
t–

)
= gn–(t)

[
F(t) – F

(
t–

)]
and

x(t) – x
(
t–

)
= g(t)

[
F(t) – F

(
t–

)]
,

whence

xn
(
t–

)
– x

(
t–

)
= xn(t) – x(t) +

[
g(t) – gn–(t)

][
F(t) – F

(
t–

)]
and it can be seen that it tends to  since xn(t)→ x(t), gn–(t) → g(t) and ‖F(t) – F(t–)‖ ≤
‖F‖BV < ∞.
At the next step, by the upper semicontinuity assumption on G(t, ·), it follows that for

every ε >  and s ∈ [, ] there exists nε,s ∈N such that

G
(
s,xn

(
s–

)) ⊂G
(
s,x

(
s–

))
+ εB, ∀n≥ nε,s.

http://www.advancesindifferenceequations.com/content/2014/1/56
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Finally, since (gn)n is weakly convergent in L([, ] \ A,μF ), following Theorem . in
[], there exists a sequence (ḡn)n of convex combinations of {gm :m ≥ n} which is point-
wise μF -a.e. convergent on [, ] \ A. By a classical method (using the Lebesgue dom-
inated convergence theorem) it can be shown that this limit is equal μF -a.e. to h. As
ḡn(s) ∈ G(s,x(s–)) + εB for all n ≥ nε,s, by passing to the limit, we get h(s) ∈ G(s,x(s–)),
μF -a.e. on [, ] \A. From this relation and taking into account () we obtain

g(s) ∈G
(
s,x

(
s–

))
μF-a.e.

and so, x is a solution. �

Remark  The solutions are, following Proposition , regulated. In the particular case
where M is bounded, all approximate solutions xn and our solution too are, in fact, of
bounded variation.
Moreover, when μ is absolutely continuous with respect to the Lebesgue measure we

obtain a result related to that in [, Theorem , p.]. Our theorem provides the exis-
tence of slow solutions for the considered problem in the sense of [, Definition , p.].

Under a different boundedness assumption, very natural and well known in Lebesgue
integration, we get another existence result.

Theorem  Let the finite Borel measure μ on [, ] and G : [, ] × R
d → Pcc(Rd) satisfy

hypotheses (), () in Theorem  and

(′) there exist a positive functionM ∈ L([, ],μ) and a constantN >  such thatG(t, y) ⊂
[M(t) +N‖y‖]B for all t ∈ [, ] and y ∈R

d .

Then there exists at least one solution for the measure-driven differential problem () on
some interval [,T] ⊂ [, ].

Proof First, as the map t 
→ ∫ t
 M(s)dμ(s) is regulated, it is bounded on [, ] by some

M > . Also, denoting by K (t) =
∫ t
 dμ(s), we get a nondecreasing function. Since  is not

a point of discontinuity, one can choose T ∈ [, ] such that NK(T) < .
In the sequel, following the same iterative method as in the proof of Theorem , we

choose x(t) = x for t ∈ [, ] and then we pick x as follows. The function G is superpo-
sitionally Borel measurable, thus we are able to choose a Borel measurable selection g(·)
of G(·,x(·–)) (see [, p.]). Define

x(t) = x +
∫ t


g(s)dμ(s), ∀t ∈ [, ].

By hypotheses,

∥∥x(t)∥∥ ≤ ‖x‖ +
∫ t


M(s) +N‖x‖dμ(s)

and so for all t ∈ [, ],

∥∥x(t)∥∥ ≤ ‖x‖ +M +NK(t)‖x‖ =M + ‖x‖
(
 +NK(t)

) ≤M +
‖x‖

 –NK(t)
.

http://www.advancesindifferenceequations.com/content/2014/1/56
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Similarly, because K is nondecreasing, one can estimate

∥∥x(t)∥∥ ≤M
(
 +NK(t)

)
+ ‖x‖

(
 +NK(t) +NK(t)

)
, ∀t ∈ [, ].

We are able to prove by the method of mathematical induction that for all t ∈ [,T]

∥∥xn(t)∥∥ ≤M
(
 + · · · +Nn–Kn–(t)

)
+ ‖x‖

(
 +NK(t) + · · · +NnKn(t)

) ≤ M + ‖x‖
 –NK(t)

.

For n =  it is already verified. Now, constructed xn, we proceed as before and choose a
μ-integrable selection gn of G(·,xn(·–)). Define

xn+(t) = x +
∫ t


gn(s)dμ(s), ∀t ∈ [, ].

So,

∥∥xn+(t)∥∥ ≤ ‖x‖ +
∫ t


M(s) +N

∥∥xn(s)∥∥dμ(s)

≤ ‖x‖ +M +N
∫ t


M

(
 + · · · +Nn–Kn–(s)

)
+ ‖x‖

(
 +NK(s) + · · · +NnKn(s)

)
dμ(s)

= ‖x‖ +M +N
[
M

(
 + · · · +Nn–Kn–(t)

)
+ ‖x‖

(
 +NK(t) + · · · +NnKn(t)

)]
K (t)

= M
(
 + · · · +NnKn(t)

)
+ ‖x‖

(
 +NK(t) + · · · +Nn+Kn+(t)

)
≤ M + ‖x‖

 –NK(t)
, ∀t ∈ [,T].

The rest of the proof goes as before, and thus the existence of solutions in the considered
sense is achieved. �

By applying an appropriate version of Gronwall’s lemma we will be able to prove that, in
fact, under the assumptions of the previous theorem, one can find global solutions.
Let us recall the following Gronwall-type result (where Dμ denotes the set of all atoms

of μ):

Lemma  [, Lemma .] Let μ = μc + μs be a finite Borel measure on [, ] with
μ({}) = , u : [, ] → R be regulated and μ-integrable, N >  and M : [, ] → R+ be
nondecreasing and μ-integrable. Suppose that

u(t) ≤M(t) +N ·
∫ t


u(s)dμ(s), t ∈ [, ].

Then

u(t) ≤M(t) +N · ϕ(t)
∫ t


ϕ–
 (s)M(s–)dμ(s),
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Cichoń and Satco Advances in Difference Equations 2014, 2014:56 Page 11 of 18
http://www.advancesindifferenceequations.com/content/2014/1/56

where

ϕ(t) = expNμc(t)
∏

τ∈Dμ∩[,t]

(
 +N · �μ(τ )

)
.

Remark  As M is a μ-integrable function and s 
→ exp(μ([s, t])) is measurable and
bounded, their product s 
→M(s) exp(μ([s, t])) is μ-integrable on [, t]. Denote by

exp[s, t] = ϕ(t)ϕ–
 (s).

Then under the conditions of the above lemma (cf. [, Lemma .]):

u(t) ≤M(t) +N ·
∫ t


M(s) exp

(
μ

(
[s, t]

))
dμ(s), t ∈ [, ].

Recall that ϕ(t) ≤ expVar[,t] μ and the latest is increasing and of bounded variation.

Theorem  Let the finite Borel measure μ on [, ] and G : [, ]×R
d →Pcc(Rd) satisfy

hypotheses in Theorem . Then there exists at least one global solution for the measure-
driven differential problem ().

Proof Step I. We firstly prove that we have an a priori estimation for all solutions. Indeed,
if x would be an arbitrary solution, then

∥∥x(t–)∥∥ = lim
τ→t,τ<t

∥∥x(τ )∥∥
≤ ‖x‖ + lim

τ→t,τ<t

∫ τ



∥∥g(s)∥∥dμ(s)

≤ ‖x‖ + lim
τ→t,τ<t

∫ τ



[
M(s) +N

∥∥x(s–)∥∥]
dμ(s)

≤ ‖x‖ +
∫ t


M(s)dμ(s) +N

∫ t



∥∥x(s–)∥∥dμ(s),

whence, by Lemma ,

∥∥x(t–)∥∥
≤ ‖x‖ +

∫ t


M(s)dμ(s) +N

∫ t



[
‖x‖ +

∫ s


M(u)dμ(u)

]
exp

(
μ

(
[s, t]

))
dμ(s)

for every t ∈ [, ].
Denoting

Ñ(t) = ‖x‖ +
∫ t


M(s)dμ(s) +N

∫ t



[
‖x‖ +

∫ s


M(u)dμ(u)

]
exp

(
μ

(
[s, t]

))
dμ(s),

we obtain a regulated, therefore bounded function so that all solutions x satisfy

∥∥x(t–)∥∥ ≤ Ñ(t)≤ K , ∀t ∈ [, ]. ()
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Step II. At this step, by a truncation procedure (as was done in the classical continuous
case in [, Theorem .]), define

G̃(t, y) =

{
G(t, y) if ‖y‖ ≤ K ,
G(t, Ky

‖y‖ ) if ‖y‖ > K .

The obtained multifunction satisfies the following conditions:
() G̃(·, ·) is product Borel measurable,
() G̃(t, ·) is usc for every t ∈ [, ],
() there exists a μ-integrable function M(t) +NK such that

G̃(t, y) ⊂ (
M(t) +NK

)
B, ∀t ∈ [, ], y ∈R

d.

Then, by Theorem , there exists at least one solution for the measure-driven differential
problem

dx(t) ∈ G̃
(
t,x(t)

)
dμ(t), ()

x() = x. ()

Step III. Since on both branches G̃(t, y) ⊂ [M(t) +N‖y‖]B for all t ∈ [, ] and y ∈R
d we

can show, by using Gronwall’s Lemma like at Step I, that any solution obtained at Step II
satisfies the inequality ‖x(t)‖ ≤ K and so, it is a solution of the initial value problem ().

�

Remark  (i) As it can be seen in our results, the usual assumptions in set-valued anal-
ysis are used in a natural way and conduct to existence results for a finite Borel measure-
driven differential inclusion. Of course, in the proof, the measure-theory results available
for complete measures, such as equivalent definitions of measurability of multifunctions
(cf. [, Chapter III] or []), must be avoided.
(ii) Let us now notice that in the main theorems we replaced the condition that G is

(locally) Lipschitz (which was used in most of the previously obtained existence results
for measure-driven inclusions) by its upper semicontinuity. Moreover, comparing to []
(which also considers upper semicontinuous multifunctions), we imposed only the up-
per semicontinuity with respect to the second argument, along with a jointly measurabil-
ity condition. Since such a kind of results has many applications in the control theory, it
seems to be an important improvement. It is very natural to require this kind of assump-
tions instead of stronger ones. For differential inclusions this is sufficient for proving upper
semicontinuity of the solutionmapping and then to find an optimal control (cf. [] or [,
Chapter ], for instance).

Example  The bouncing ball system models an elastic ball bouncing on a (not-neces-
sarily flat) surface. A set-valued bouncing ball i.e. when time dynamics can be set-valued
are typically used for deriving bounds on the solution of nonlinear single-valued hybrid
systems in a small neighborhood of a Zeno equilibrium point (that is, a point towards
which the infinite number of discrete transitions occurring in finite time accumulates, cf.
[]). The vertical motion of the ball can be captured by an impulse differential inclusion.
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This system is described by a measure-driven inclusion (which is a reformulated problem
from [])

dx ∈ F(x)dx +G(x)dμd(x).

The considered in this model dynamical system is a sum of a slow-time velocity belonging
to a set F(x) and a fast-time contribution coming from another set G(x)dμs, where μs is a
vector-valued discrete measure.
In a classical set-valued bouncing ball case we have Lipschitz assumptions on the right-

hand side - cf. [] or []. Namely, we have (cf. []) F(x) = {[x,a] : a ∈ [amin,amax]},G(x) =
[,–ex] (with e < ). The measure μd is defined by its distribution

d(t) =

{
 when  ≤ t ≤ t,
–

∑i
j= x(tj–) when ti ≤ t ≤ ti+.

Our existence results allow to assert that the problempossess solutions in themore general
case where both multifunctions can be time-dependent and only upper semicontinuous.

In a series of papers of Silva and his collaborators (e.g. []) another definition for the
solution was considered (going back to []). The main idea is to use a reparametrization
method for μ and in this way to transform the measure-driven differential inclusions into
usual differential inclusions.
In earlier works a kind of limit solutions x was considered (i.e. x is a limit of approx-

imated solutions xn for problems driven by measures μn tending, in some sense, to μ -
cf. []). More precisely, the measure μ was approximated by measures μn which are ab-
solutely continuous with respect to the Lebesgue measure and the limit was shown to be
independent on the choice of this sequence (μn)n, see []. A similar concept (approx-
imable solutions) for particular measures can be found in [, ].
It is interesting that these two definitions are equivalent and can be described as follows.

Definition  A function x : [, ] → R
d is called a (robust) solution for the problem ()

if

x(t) = x +
∫ t


g(s)dμ(s), ∀t ∈ [, ]

for some μ-integrable function g such that

g(t) ∈ G̃
(
t,x

(
t–

)
;μ

({t})) μ-a.e.,

where the multifunction G̃ is defined on [, ]×R
d × [,∞) as follows: if α > , then

G̃(t, v,α) =
{
y(α) – v

α
: y ∈ AC([,α]), ẏ(σ ) ∈ G

(
t, y(σ )

)
a.e., y() = v

}
and if α = , then

G̃(t, v,α) =G(t, v).
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In some particular cases (as, for example, the problem studied in []) our Definition  of
a solution is equivalent to that of a robust solution. Obviously, for a general Borel measure
μ the two concepts are distinct.

Remark  Under the assumptions that G(·, ·) has closed graph and the values of G are
contained in some ball, Theorem . in [] states that the problem () has robust solutions.
Besides, the solution set is continuous with respect to the data, in the sense that when a
sequence of measures (μi) tends to μ in the weak∗ topology (cf. []), for any sequence (xi)
of robust solutions corresponding to μi there exists a robust solution x corresponding to
μ with the property that on a subsequence

xi → x
(
weakly∗) and xi(t) → x(t) except on the atoms of μ.

Our concept of solution does not offer this closure property (as stated in [, p.]), which
is essential in some cases (see [] or []), but we consider more general problems and in
many situations, for non-robust systems (see [, , ]) solutions as in our Definition 
are also good enough.
However, a closure property is available: Theorem . in [] shows that if gk(·,x(·)) →

g(·,x(·)) w.r.t. the Alexiewicz norm (i.e. the supremum norm of the primitive) for each x
and satisfy a Lipschitz condition, then the solutions of the problems

x(t) = x +
∫ t


gk

(
s,x

(
s–

))
dμ(s)

pointwise converge to a solution of the problem

x(t) = x +
∫ t


g
(
s,x

(
s–

))
dμ(s).

Recall that when considering discontinuous solutions, a fixed measure-driven problem
can have solution in one sense and not to have solutions in another sense. Furthemore,
different functions can be simultaneously solutions for the same problem-considered in
different senses. So, obviously, separate solutions require separate existence theorems.

Until now, we described the problem with an arbitrary Borel measure. One of the pos-
sible extensions is to consider for each of the three measures in which our measure can
be decomposed μ = μac + μns + μpa (see Section ) a different set of assumptions. In our
main theorem we impose Gdμ = G dμac + G dμns + G dμpa with G = G = G = G,
i.e. the assumptions on Gi (i = , , ) should be the same. Almost all papers dealing with
measure-perturbed multivalued problems are devoted to the study of only some partic-
ular cases of our problem. This is motivated by direct applications of obtained results or
there are some problems in the proposed proofs. Moreover, different kind of solutions are
considered (mainly due to different applications or proofs). In our opinion, the general
case seems to be interesting, because this allows one to indicate some possible extensions
in earlier papers.
As can be seen in the next result, by considering similar assumptions as in our existence

Theorems  or , only for the ‘worst’ part μns, the remaining assumptions can be relaxed.
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In order to do this, we need to recall the definition of a solution for this particular case (cf.
[] or []). Let us consider the following problem:

dx(t) ∈G
(
t,x(t)

)
dμac(t) +G

(
t,x(t)

)
dμns(t) +G

(
t,x(t)

)
dμpa(t), x() = x. ()

Definition  A solution of the problem () is a function x : [, ] → R
d such that x =

xac + xns + xpa, where
. xac(t) = x +

∫ t
 gac(s)dμac(s) for t ∈ [, ] and for some μac-integrable function

gac : [, ]→ R
d and gac(t) ∈G(t,x(t–)) μac-a.e.,

. xns(t) =
∫ t
 gns(s)dμns(s) for some μns-integrable function gns : [, ] →R

d and
gns(t) ∈G(t,x(t–)) μns-a.e.,

. xpa(t) =
∫ t
 gpa(s)dμpa(s) for some μpa-integrable function gpa : [, ] →R

d and
gpa(t) ∈ G̃(t,x(t–);μpa(t)) μpa-a.e.

Note that in earlier papers some of the above ‘parts’ of the solutions are not existing
and then Definition  is treated as a considered solution (see the corollaries below). In
general: the convergence of an integral is expected instead of the approximation property
by a sequence of appropriate measures (cf. Definition ). As claimed in [] for single-
valued problems (selections) we have

x(t) = x +
∫ t


gac(s)F ′(s)ds +

∫ t


gns(s)dμns(s) +

∑
tk≤t,tk∈A

S
(
tk ,x(tk–),μ

({tk})),
where A denote a set of atoms for μ and all the above integrals should be finite (conver-
gent).
The theorem given below allows us to distinguish between different assumptions on

every part of the measure μ.

Theorem  Assume that:
. G : [, ]×R

d →Pcc(Rd) is such that G(·, ·) is product Borel measurable, G(t, ·) is
usc for every t ∈ [, ], there exist a positive functionM ∈ L([, ],μac) and a
constant N >  such that G(t, y) ⊂ [M(t) +N‖y‖]B for all t ∈ [, ] and y ∈R

d ,
. G : [, ]×R

d →Pcc(Rd) is such that G(·, ·) is product Borel measurable, G(t, ·)
is usc for every t ∈ [, ], there exists a positive functionM ∈ L([, ],μns) such that
d(,G(t, y)) ≤M(t) for all t ∈ [, ] and y ∈R

d ,
. G is such that S : [, ]×R

d × [, ]→Pcc(Rd) has compact values and is bounded
byM.Moreover the set-valued map S(t, ·,α) :Rd →R

d is usc, uniformly in
t,α ∈ [, ].

Then there exists at least one solution for the measure-driven differential problem ().

The proof of the above theorem runs like the proof of our main theorem with an ap-
propriate change of the definition of a sequence (xn), so we leave a detailed proof to the
reader.
The proposed approach via measure-driven inclusions seems to be interesting, because

it allows one to unify separately investigated cases for different multivalued problems. Let
us recall that in the cases listed below solutions are treated in the sense of Definition .
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This means that there is no general method for an approximation of such solutions (like
in our Definition ) and from this point of view our results are more applicable.

Corollary  [, p.] Let Q ⊂ R × R
d be an open subset containing (,x). Let F be

an upper semicontinuous map from Q into the nonempty closed convex subsets of Rd . We
assume that (t,x)→m(F(t,x)) is locally compact. Then there exist T >  and an absolutely
continuous function x(·) defined on [,T], a (slow) solution to the differential inclusion
x′(t) ∈ F(t,x(t)), x() = x.

Here theminimal selectionm(F(t,x)) of amultifunction F is locally compact in the sense
that for each point (t,x) one can find a neighborhood which is mapped into a compact set
(see [, p.]).

Corollary  [, Corollary .] Let G and G have closed convex values, G(·,x) is mea-
surable,G(·, ·) is product Borelmeasurable, there exist an integrable functionM anda con-
stant N >  such that G(t,x)⊂M(t)( + ‖x‖)B and G(t,x)⊂N( + ‖x‖)B for all x, y ∈R

n.
Assume that there exist an integrable function k and a constant c such that

G(t,x)⊂G(t, y) + k(t)‖x – y‖B for all x, y ∈R
n,

and that G is Lipschitz:

G(t,x)⊂G(t, y) + c‖x – y‖B for all x, y ∈R
n.

Then for any positive Borel measure having the Lebesgue decomposition μ = μac +μpa (i.e.
μns ≡ ) and arbitrary x ∈R

n there exists a solution for ().

For the case of discrete measures let us recall the following result formulated in [] in
the language of dynamic inclusions i.e. inclusions on time scales (cf. also []). Here we
consider the case T = Z and then we have a difference inclusion.

Corollary  Let G : N × R → R have compact convex values, G(·,x) be measurable,
G(n, ·) be usc; and for every r >  assume that there exists an integrable function Mr such
that ‖G(n,x)‖ ≤ Mr(n) whenever ‖x‖ ≤ r for all x ∈ C(N,R). Then there exists at least one
solution for the difference inclusion

y(n + ) – y(n) ∈ G(n, y), n ∈ N.

Notice that difference inclusions are also investigated without the context of time scales.
A similar result to the one presented above can be found in [, Theorem .] in a direct
formof difference inclusions. In [] difference inclusions are used to solve some problems
in optimal control theory. In particular, it was proved that any solution for autonomous
differential inclusions can be approximated by a sequence of solutions for difference in-
clusions (themultifunctionG is assumed to be bounded and Lipschitz). A brief discussion
of other motivations for difference inclusions can be found in [] (see also the references
therein). We refer to [] for a full survey of difference methods for differential inclusions.
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Also, the problem for difference inclusions was investigated in the case of impulsive differ-
ential inclusions ([], for instance) and in this setting our approach seems to be natural
and does not require separate studies.
Moreover, some results presented for the case of so-called q-difference inclusions could

be reformulated in our language, but till now they are only particular cases of Corollary .
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