26 research outputs found

    GFP-tagged multimetal-tolerant bacteria and their detection in the rhizosphere of white mustard

    Get PDF
    The introduction of rhizobacteria that tolerate heavy metals is a promising approach to support plants involved in phytoextraction and phytostabilisation. In this study, soil of a metal-mine wasteland was analyzed for the presence of metal-tolerant bacterial isolates, and the tolerance patterns of the isolated strains for a number of heavy metals and antibiotics were compared. Several of the multimetal-tolerant strains were tagged with a broad host range reporter plasmid (i.e. pPROBE-NT) bearing a green fluorescent protein marker gene (gfp). Overall, the metal-tolerant isolates were predominately Gram-negative bacteria. Most of the strains showed a tolerance to five metals (Zn, Cu, Ni, Pb and Cd), but with differing tolerance patterns. From among the successfully tagged isolates, we used the transconjugant Pseudomonas putida G25 (pPROBE-NT) to inoculate white mustard seedlings. Despite a significant decrease in transconjugant abundance in the rhizosphere, the gfp-tagged cells survived on the root surfaces at a level previously reported for root colonisers

    Hospital outpatient perceptions of the physical environment of waiting areas: the role of patient characteristics on atmospherics in one academic medical center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examines hospital outpatient perceptions of the physical environment of the outpatient waiting areas in one medical center. The relationship of patient characteristics and their perceptions and needs for the outpatient waiting areas are also examined.</p> <p>Method</p> <p>The examined medical center consists of five main buildings which house seventeen primary waiting areas for the outpatient clinics of nine medical specialties: 1) Internal Medicine; 2) Surgery; 3) Ophthalmology; 4) Obstetrics-Gynecology and Pediatrics; 5) Chinese Medicine; 6) Otolaryngology; 7) Orthopedics; 8) Family Medicine; and 9) Dermatology. A 15-item structured questionnaire was developed to rate patient satisfaction covering the four dimensions of the physical environments of the outpatient waiting areas: 1) visual environment; 2) hearing environment; 3) body contact environment; and 4) cleanliness. The survey was conducted between November 28, 2005 and December 8, 2005. A total of 680 outpatients responded. Descriptive, univariate, and multiple regression analyses were applied in this study.</p> <p>Results</p> <p>All of the 15 items were ranked as relatively high with a range from 3.362 to 4.010, with a neutral score of 3. Using a principal component analysis' summated scores of four constructed dimensions of patient satisfaction with the physical environments (i.e. visual environment, hearing environment, body contact environment, and cleanliness), multiple regression analyses revealed that patient satisfaction with the physical environment of outpatient waiting areas was associated with gender, age, visiting frequency, and visiting time.</p> <p>Conclusion</p> <p>Patients' socio-demographics and context backgrounds demonstrated to have effects on their satisfaction with the physical environment of outpatient waiting areas. In addition to noticing the overall rankings for less satisfactory items, what should receive further attention is the consideration of the patients' personal characteristics when redesigning more comfortable and customized physical environments of waiting areas.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    c-Myc induction of programmed cell death may contribute to carcinogenesis: A perspective inspired by several concepts of chemical carcinogenesis

    No full text
    The c-Myc protein, encoded by c-myc gene, in its wild-type form can induce tumors with a high frequency and can induce massive programmed cell death (PCD) in most transgenic mouse models, with greater efficiency than other oncogenes. Evidence also indicates that c-Myc can cause proliferative inhibition, i.e., mitoinhibition. The c-Myc-induced PCD and mitoinhibition, which may be attributable to its inhibition of cyclin D1 and induction of p53, may impose a pressure of compensatory proliferation, i.e., regeneration, onto the initiated cells (cancer progenitor cells) that occur sporadically and are resistant to the mitoinhibition. The initiated cells can thus proliferate robustly and progress to a malignancy. This hypothetical thinking, i.e., the concurrent PCD and mitoinhibition induced by c-Myc can promote carcinogenesis, predicts that an optimal balance is achieved between cell death and ensuing regeneration during oncogenic transformation by c-Myc, which can better promote carcinogenesis. In this perspective, we summarize accumulating evidence and challenge the current model that oncoprotein induces carcinogenesis by promoting cellular proliferation and/or inhibiting PCD. Inspired by c-myc oncogene, we surmise that many tumor-suppressive or growth-inhibitory genes may also be able to promote carcinogenesis in a similar way, i.e., by inducing PCD and/or mitoinhibition of normal cells to create a need for compensatory proliferation that drives a robust replication of initiating cells

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access
    corecore