15 research outputs found

    Bare soil cover and arbuscular mycorrhizal community in the first montane forest restoration in Central Argentina

    No full text
    Soil erosion affects extensive areas worldwide and must be urgently reduced promoting plant cover and beneficial microorganisms associated with plants, including arbuscular mycorrhizal fungi (AMF). In mountain environments, plant cover is difficult to enhance due to harsh conditions during the dry season and steep slopes. Our objective was to evaluate the percentage of the soil surface covered by plants and the AMF community associated with trees 12.5 years after planting during forest restoration efforts in microsites at different levels of soil degradation. The study was performed in the first montane forest restoration initiative of Central Argentina, where one of the trials consisted of planting Polylepis australis saplings at microsites with different levels of soil degradation: high, intermediate, and low. After 12.5 years, percentage of bare soil cover was significantly reduced by 36 and 37% in the high and intermediate degradation microsites, respectively. Low degradation microsites were initially very low in bare soil and did not significantly change. Mycorrhizal colonization, hyphae, vesicles, arbuscules, AMF diversity, and community structure were similar among microsite types. Percentage of hyphal entry points was higher at microsites with low degradation, number of spores was higher in high and intermediate degradation, and species richness was higher in high degradation. Acaulospora and Glomus were the most abundant genera in all microsites. We conclude that even in the most degraded microsites around 2.8% of the bare soil is covered by vegetation each year and that the arbuscular mycorrhizal community is highly tolerant and adapted to soils with different disturbance types.Fil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Divan, Adriana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Renison, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin

    Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards

    No full text
    International audienceAims The aim of this study was to explore the impact of soil management strategies and the contribution of root traits of plant communities and soil organic carbon (SOC) in explaining soil aggregate stability in vineyards.Methods: We measured topsoil aggregate stability, soil properties and root traits of 38 plant communities in an experimental vineyard, previously subjected to different soil management strategies. Then we investigated statistical relations between aggregate stability, root traits and SOC and estimated root trait and SOC contributions to gain insight into aggregate stability.Results: Soil management strategies strongly affected soil aggregate stability, with a negative effect of tillage, even after several years of service crop cover. Among the investigated parameters, soil organic carbon was found to contribute the most to aggregate stability. Root mean diameter and root mass density showed positive correlations with aggregate stability, while specific root length showed a negative correlation with aggregate stability.Conclusions: Soil aggregate stability is the result of complex interactions between soil management strategies, soil properties and plant root traits. Service crops improve aggregate stability, and a trait-based approach could help to identify service crop ideotypes and expand the pool of species of interest for providing services in agroecosystems in relation with the soil physical quality
    corecore