39 research outputs found

    An atomic mechanism for the boson peak in metallic glasses

    Full text link
    The boson peak in metallic glasses is modeled in terms of local structural shear rearrangements. Using Eshelby's solution of the corresponding elasticity theory problem (J. D. Eshelby, Proc. Roy. Soc. A241, 376 (1957)), one can calculate the saddle point energy of such a structural rearrangement. The neighbourhood of the saddle point gives rise to soft resonant vibrational modes. One can calculate their density, their kinetic energy, their fourth order potential term and their coupling to longitudinal and transverse sound waves.Comment: 9 pages, 7 figures, 31 references, contribution to 11th International Workshop on Complex Systems, Andalo (Italy), March 200

    On the origin of the Boson peak in globular proteins

    Full text link
    We study the Boson Peak phenomenology experimentally observed in globular proteins by means of elastic network models. These models are suitable for an analytic treatment in the framework of Euclidean Random Matrix theory, whose predictions can be numerically tested on real proteins structures. We find that the emergence of the Boson Peak is strictly related to an intrinsic mechanical instability of the protein, in close similarity to what is thought to happen in glasses. The biological implications of this conclusion are also discussed by focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems, Molveno (2006

    Atomic Layer Deposition (ALD) to Mitigate Tin Whisker Growth and Corrosion Issues on Printed Circuit Board Assemblies

    Get PDF
    This paper presents the results of a research program set up to evaluate atomic layer deposition (ALD) conformal coatings as a method of mitigating the growth of tin whiskers from printed circuit board assemblies. The effect of ALD coating process variables on the ability of the coating to mitigate whisker growth were evaluated. Scanning electron microscopy and optical microscopy were used to evaluate both the size and distribution of tin whiskers and the coating/whisker interactions. Results show that the ALD process can achieve significant reductions in whisker growth and thus offers considerable potential as a reworkable whisker mitigation strategy. The effect of ALD layer thickness on whisker formation was also investigated. Studies indicate that thermal exposure during ALD processing may contribute significantly to the observed whisker mitigation

    The Interferon Response Inhibits HIV Particle Production by Induction of TRIM22

    Get PDF
    Treatment of human cells with Type 1 interferons restricts HIV replication. Here we report that the tripartite motif protein TRIM22 is a key mediator. We used transcriptional profiling to identify cellular genes that were induced by interferon treatment and identified TRIM22 as one of the most strongly up-regulated genes. We confirmed, as in previous studies, that TRIM22 over-expression inhibited HIV replication. To assess the role of TRIM22 expressed under natural inducing conditions, we compared the effects of interferon in cells depleted for TRIM22 using RNAi and found that HIV particle release was significantly increased in the knockdown, implying that TRIM22 acts as a natural antiviral effector. Further studies showed that TRIM22 inhibited budding of virus-like particles containing Gag only, indicating that Gag was the target of TRIM22. TRIM22 did not block the release of MLV or EIAV Gag particles. Inhibition was associated with diffuse cytoplasmic staining of HIV Gag rather than accumulation at the plasma membrane, suggesting TRIM22 disrupts proper trafficking. Mutational analyses of TRIM22 showed that the catalytic amino acids Cys15 and Cys18 of the RING domain are required for TRIM22 antiviral activity. These data disclose a pathway by which Type 1 interferons obstruct HIV replication

    Mesoscale engineering of photonic glass for tunable luminescence

    Get PDF
    The control of optical behavior of active materials through manipulation of microstructure has led to the development of high-performance photonic devices with enhanced integration density, improved quantum efficiencies and controllable colour output. However, the achievement of robust light-harvesting materials with tunable, broadband and flatten emission remains a long-standing goal, owing to the limited inhomogeneous broadening in ordinary hosts. Here, we describe an effective strategy for management of photon emission by manipulation of mesoscale heterogeneities in optically active materials. Importantly, this unique approach enables control of dopant-dopant and dopant-host interactions at the extended mesoscale. This allows generating intriguing optical phenomena such as high activation ratio of dopant (close to 100 %), dramatically inhomogeneous broadening (up to 480 nm), notable emission enhancement, and moreover, simultaneously extending emission bandwidth and flattening spectral shape in glass and fiber. Our results highlight that the findings connect the understanding and manipulation at the mesoscale realm to functional behavior at the macroscale, and the approach to managing the dopants based on mesoscale engineering may provide new opportunity for construction of robust fiber light source.National Natural Science Foundation of China (Grant IDs: 11474102, 51202180), the Chinese Program for New Century Excellent Talents in University (Grant ID: NCET-13-0221), Guangdong Natural Science Funds for Distinguished Young Scholar (Grant ID: S2013050014549), Fundamental Research Funds for the Central University, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, World Premier International Research Center Initiative (WPI), MEXT, JapanThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
    corecore