93 research outputs found

    Particle Swarm Optimization with Reinforcement Learning for the Prediction of CpG Islands in the Human Genome

    Get PDF
    BACKGROUND: Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome are often referred to as CpG islands. These islands are usually located in the 5' end of genes. Recently, several algorithms for the prediction of CpG islands have been proposed. METHODOLOGY/PRINCIPAL FINDINGS: We propose here a new method called CPSORL to predict CpG islands, which consists of a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously. However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus these methods leave room for improvement. CONCLUSIONS/SIGNIFICANCE: Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster, CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%) region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter (67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for CpG islands in the entire human genome

    Sexually dimorphic gene expression in the heart of mice and men

    Get PDF
    The prevalence and clinical manifestation of several cardiovascular diseases vary considerably with sex and age. Thus, a better understanding of the molecular basis of these differences may represent a starting point for an improved gender-specific medicine. Despite the fact that sex-specific differences have been observed in the cardiovascular system of humans and animal models, systematic analyses of sexual dimorphisms at the transcriptional level in the healthy heart are missing. Therefore we performed gene expression profiling on mouse and human cardiac samples of both sexes and young as well as aged individuals and verified our results for a subset of genes using real-time polymerase chain reaction in independent left ventricular samples. To tackle the question whether sex differences are evolutionarily conserved, we also compared sexually dimorphic genes between both species. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. Male-specific expression of Y-linked genes was observed in mouse hearts as well as in the human myocardium (e.g. Ddx3y, Eif2s3y and Jarid1d). Higher expression levels of X-linked genes were detected in female mice for Xist, Timp1 and Car5b and XIST, EIF2S3X and GPM6B in women. Furthermore, genes on autosomal chromosomes encoding cytochromes of the monoxygenase family (e.g. Cyp2b10), carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides (e.g. Nppb) were identified with sex- and/or age-specific expression levels. This study underlines the relevance of sex and age as modifiers of cardiac gene expression

    Polycomb-mediated silencing in neuroendocrine prostate cancer

    Get PDF
    BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PCa) for which the median survival remains less than a year. Current treatments are only palliative in nature, and the lack of suitable pre-clinical models has hampered previous efforts to develop novel therapeutic strategies. Addressing this need, we have recently established the first in vivo model of complete neuroendocrine transdifferentiation using patient-derived xenografts. Few genetic differences were observed between parental PCa and relapsed NEPC, suggesting that NEPC likely results from alterations that are epigenetic in nature. Thus, we sought to identify targetable epigenetic regulators whose expression was elevated in NEPC using genome-wide profiling of patient-derived xenografts and clinical samples. RESULTS: Our data indicate that multiple members of the polycomb group (PcG) family of transcriptional repressors were selectively upregulated in NEPC. Notably, CBX2 and EZH2 were consistently the most highly overexpressed epigenetic regulators across multiple datasets from clinical and xenograft tumor tissues. Given the striking upregulation of PcG genes and other transcriptional repressors, we derived a 185-gene list termed 'neuroendocrine-associated repression signature' (NEARS) by overlapping transcripts downregulated across multiple in vivo NEPC models. In line with the striking upregulation of PcG family members, NEARS was preferentially enriched with PcG target genes, suggesting a driving role for PcG silencing in NEPC. Importantly, NEARS was significantly associated with high-grade tumors, metastatic progression, and poor outcome in multiple clinical datasets, consistent with extensive literature linking PcG genes and aggressive disease progression. CONCLUSIONS: We have explored the epigenetic landscape of NEPC and provided evidence of increased PcG-mediated silencing associated with aberrant transcriptional regulation of key differentiation genes. Our results position CBX2 and EZH2 as potential therapeutic targets in NEPC, providing opportunities to explore novel strategies aimed at reversing epigenetic alterations driving this lethal disease

    Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Get PDF
    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol\u27s effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b,Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders

    Unmet need in the hyperlipidaemia population with high risk of cardiovascular disease: a targeted literature review of observational studies

    Get PDF
    BACKGROUND: The aim of this study was to examine recommended target levels of low-density lipoprotein cholesterol (LDL-C) for hyperlipidaemia patients at high risk (i.e., with two or more risk factors or coronary heart disease or its risk equivalents) for cardiovascular disease (CVD); to determine LDL-C targets recommended by guidelines, and to examine the proportions of patients who do not achieve targeted LDL-C levels in real-world studies. METHODS: Electronic databases were searched: Medline, Medline In-Process, Embase, BIOSIS, and the Cochrane Library (1 January 2005 to 31 December 2013). Guideline searches were limited to publications in the last 5 years. There were no geographical or language restrictions. RESULTS: Seventeen guidelines and 42 observational studies that reported on high-risk hyperlipidaemia patients were identified. The National Cholesterol Education Program–Adult Treatment Panel III’s LDL-C target levels were the most common guidelines used for patients with very high hyperlipidaemia. However, between 68 and 96 % of patients in the studies did not achieve an LDL-C goal <70 mg/dL, except in one study conducted in China (16.9 %). In high-risk patients, 61.8 to 93.8 % did not achieve a target of <100 mg/dL. Regarding common comorbidities, patients with concomitant CVD or diabetes were least likely to reach their target LDL-C goals. CONCLUSION: In patients with high risk for CVD, the majority of patients do not attain recommended LDL-C goals, highlighting worldwide suboptimal hyperlipidaemia management and missed opportunities for reduction of the patients CVD risk. Lipid-modifying management strategies need to be intensified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12872-016-0241-3) contains supplementary material, which is available to authorized users

    Lipid, blood pressure and kidney update 2013

    Get PDF

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles
    corecore