7 research outputs found

    Conception et optimisation de la région d'interaction d'un collisionneur linéaire électron-positon

    Get PDF
    Strong focalisation of the beam is mandatory at the interaction point of the future linear collider in order to reach very high luminosity. In this work, the ILC (International Linear Collider) beam delivery system has been re-optimised, first to take the ‘push-pull’ of the two detectors into account, then to evaluate the influence of a reduction of the total length by hundred meters approximately. In the following part, the interaction region has been optimised to restore the nominal luminosity in the presence of the detector, containing a solenoid and a magnetic dipole. Due to the crossing angle of the beams, these elements are not coaxial and a model for the interaction region had to be developed. This model enables to track the beam in the entire beam delivery system, from the end of the linac to the interaction point. The simulation includes for the first time all the electromagnetic elements of the interaction region (crab cavity, final focusing system quadrupoles and sextupoles, solenoid, detector integrated dipole). Thanks to this model, the weak anti-solenoid could be added and optimised as the main corrector of the solenoid effects on the beam. To study the new performances of the collider after full compensation of these effects, a luminosity calculation tool has been developed. It is shown that the momentum acceptance is reduced after compensation of the solenoid effects. Moreover, transverse coupling induces the transfer of the crab cavity horizontal kick to the vertical plane, implying a significant luminosity loss. Finally the last part of the thesis concerns the application of a large Piwinski’s angle to the linear colliders. The calculation of the beam-beam interaction parameters in the presence of a crossing angle is studied. Due to the crossing angle the central trajectory is deviated in the horizontal plane, preventing the beamstrahlung to be reduced at constant luminosity. However the disruption could be made significantly smaller.La très haute luminosité visée par les futurs collisionneurs linéaires nécessite une très forte focalisation finale des faisceaux au point d’interaction jusqu’à des dimensions transverses nanométriques. Dans le cadre de ce travail, la ligne de haute énergie de l’ILC délivrant le faisceau au point d’interaction a d’abord été optimisée pour permettre le ‘push-pull’ des détecteurs, ainsi que pour étudier l’impact d’une réduction d’une centaine de mètre de la longueur totale de la ligne. L’objet du travail a ensuite consisté à optimiser la région d’interaction pour conserver la luminosité en présence du détecteur de l’expérience contenant un solénoïde et un dipôle. Dans ce but, un modèle de la région d’interaction a été établi, afin d’être en mesure de simuler le transport du faisceau dans l’ensemble de la ligne de haute énergie en intégrant les éléments non coaxiaux du détecteur. Cette modélisation inclut pour la première fois tous les éléments électromagnétiques de la région d’interaction (cavité crabe, quadripôles et sextupôles du système de focalisation, solénoïde, dipôle intégré au détecteur). Elle a permis l’optimisation de l’anti-solénoïde, élément essentiel du système de correction des effets du solénoïde de l’expérience. Pour mesurer les performances de la machine après compensation totale des effets du solénoïde, un outil de calcul de la luminosité apte à utiliser des distributions quelconques a été développé. On montre alors que l’acceptance en moment de la ligne est réduite en présence du solénoïde compensé. Il a de plus été mis en évidence que l’insertion du solénoïde induit le transfert de l’effet de la cavité crabe du plan horizontal vers le plan vertical, ce qui provoque une nouvelle perte de luminosité. Enfin la dernière partie de ce travail de thèse est consacrée à l’étude de l’application d’une configuration à grand angle de Piwinski aux collisionneurs linéaires. Pour cela les paramètres des effets faisceau-faisceau en présence d’un angle de croisement ont été évalués. Il est possible de réduire la disruption du faisceau après collision en conservant la luminosité, en revanche réduire le paramètre de beamstrahlung est moins aisé en raison de la déviation horizontale de la trajectoire centrale

    Design and optimisation of the interaction region of an electron-positron linear collider

    No full text
    La très haute luminosité visée par les futurs collisionneurs linéaires nécessite une très forte focalisation finale des faisceaux au point d’interaction jusqu’à des dimensions transverses nanométriques. Dans le cadre de ce travail, la ligne de haute énergie de l’ILC délivrant le faisceau au point d’interaction a d’abord été optimisée pour permettre le ‘push-pull’ des détecteurs, ainsi que pour étudier l’impact d’une réduction d’une centaine de mètre de la longueur totale de la ligne. L’objet du travail a ensuite consisté à optimiser la région d’interaction pour conserver la luminosité en présence du détecteur de l’expérience contenant un solénoïde et un dipôle. Dans ce but, un modèle de la région d’interaction a été établi, afin d’être en mesure de simuler le transport du faisceau dans l’ensemble de la ligne de haute énergie en intégrant les éléments non coaxiaux du détecteur. Cette modélisation inclut pour la première fois tous les éléments électromagnétiques de la région d’interaction (cavité crabe, quadripôles et sextupôles du système de focalisation, solénoïde, dipôle intégré au détecteur). Elle a permis l’optimisation de l’anti-solénoïde, élément essentiel du système de correction des effets du solénoïde de l’expérience. Pour mesurer les performances de la machine après compensation totale des effets du solénoïde, un outil de calcul de la luminosité apte à utiliser des distributions quelconques a été développé. On montre alors que l’acceptance en moment de la ligne est réduite en présence du solénoïde compensé. Il a de plus été mis en évidence que l’insertion du solénoïde induit le transfert de l’effet de la cavité crabe du plan horizontal vers le plan vertical, ce qui provoque une nouvelle perte de luminosité. Enfin la dernière partie de ce travail de thèse est consacrée à l’étude de l’application d’une configuration à grand angle de Piwinski aux collisionneurs linéaires. Pour cela les paramètres des effets faisceau-faisceau en présence d’un angle de croisement ont été évalués. Il est possible de réduire la disruption du faisceau après collision en conservant la luminosité, en revanche réduire le paramètre de beamstrahlung est moins aisé en raison de la déviation horizontale de la trajectoire centrale.Strong focalisation of the beam is mandatory at the interaction point of the future linear collider in order to reach very high luminosity. In this work, the ILC (International Linear Collider) beam delivery system has been re-optimised, first to take the ‘push-pull’ of the two detectors into account, then to evaluate the influence of a reduction of the total length by hundred meters approximately. In the following part, the interaction region has been optimised to restore the nominal luminosity in the presence of the detector, containing a solenoid and a magnetic dipole. Due to the crossing angle of the beams, these elements are not coaxial and a model for the interaction region had to be developed. This model enables to track the beam in the entire beam delivery system, from the end of the linac to the interaction point. The simulation includes for the first time all the electromagnetic elements of the interaction region (crab cavity, final focusing system quadrupoles and sextupoles, solenoid, detector integrated dipole). Thanks to this model, the weak anti-solenoid could be added and optimised as the main corrector of the solenoid effects on the beam. To study the new performances of the collider after full compensation of these effects, a luminosity calculation tool has been developed. It is shown that the momentum acceptance is reduced after compensation of the solenoid effects. Moreover, transverse coupling induces the transfer of the crab cavity horizontal kick to the vertical plane, implying a significant luminosity loss. Finally the last part of the thesis concerns the application of a large Piwinski’s angle to the linear colliders. The calculation of the beam-beam interaction parameters in the presence of a crossing angle is studied. Due to the crossing angle the central trajectory is deviated in the horizontal plane, preventing the beamstrahlung to be reduced at constant luminosity. However the disruption could be made significantly smaller

    Conception et optimisation de la région d'interaction d'un collisionneur linéaire électron-positon

    No full text
    La très haute luminosité visée par les futurs collisionneurs linéaires nécessite une très forte focalisation finale des faisceaux au point d interaction jusqu à des dimensions transverses nanométriques. Dans le cadre de ce travail, la ligne de haute énergie de l ILC délivrant le faisceau au point d interaction a d abord été optimisée pour permettre le push-pull des détecteurs, ainsi que pour étudier l impact d une réduction d une centaine de mètre de la longueur totale de la ligne. L objet du travail a ensuite consisté à optimiser la région d interaction pour conserver la luminosité en présence du détecteur de l expérience contenant un solénoïde et un dipôle. Dans ce but, un modèle de la région d interaction a été établi, afin d être en mesure de simuler le transport du faisceau dans l ensemble de la ligne de haute énergie en intégrant les éléments non coaxiaux du détecteur. Cette modélisation inclut pour la première fois tous les éléments électromagnétiques de la région d interaction (cavité crabe, quadripôles et sextupôles du système de focalisation, solénoïde, dipôle intégré au détecteur). Elle a permis l optimisation de l anti-solénoïde, élément essentiel du système de correction des effets du solénoïde de l expérience. Pour mesurer les performances de la machine après compensation totale des effets du solénoïde, un outil de calcul de la luminosité apte à utiliser des distributions quelconques a été développé. On montre alors que l acceptance en moment de la ligne est réduite en présence du solénoïde compensé. Il a de plus été mis en évidence que l insertion du solénoïde induit le transfert de l effet de la cavité crabe du plan horizontal vers le plan vertical, ce qui provoque une nouvelle perte de luminosité. Enfin la dernière partie de ce travail de thèse est consacrée à l étude de l application d une configuration à grand angle de Piwinski aux collisionneurs linéaires. Pour cela les paramètres des effets faisceau-faisceau en présence d un angle de croisement ont été évalués. Il est possible de réduire la disruption du faisceau après collision en conservant la luminosité, en revanche réduire le paramètre de beamstrahlung est moins aisé en raison de la déviation horizontale de la trajectoire centrale.Strong focalisation of the beam is mandatory at the interaction point of the future linear collider in order to reach very high luminosity. In this work, the ILC (International Linear Collider) beam delivery system has been re-optimised, first to take the push-pull of the two detectors into account, then to evaluate the influence of a reduction of the total length by hundred meters approximately. In the following part, the interaction region has been optimised to restore the nominal luminosity in the presence of the detector, containing a solenoid and a magnetic dipole. Due to the crossing angle of the beams, these elements are not coaxial and a model for the interaction region had to be developed. This model enables to track the beam in the entire beam delivery system, from the end of the linac to the interaction point. The simulation includes for the first time all the electromagnetic elements of the interaction region (crab cavity, final focusing system quadrupoles and sextupoles, solenoid, detector integrated dipole). Thanks to this model, the weak anti-solenoid could be added and optimised as the main corrector of the solenoid effects on the beam. To study the new performances of the collider after full compensation of these effects, a luminosity calculation tool has been developed. It is shown that the momentum acceptance is reduced after compensation of the solenoid effects. Moreover, transverse coupling induces the transfer of the crab cavity horizontal kick to the vertical plane, implying a significant luminosity loss. Finally the last part of the thesis concerns the application of a large Piwinski s angle to the linear colliders. The calculation of the beam-beam interaction parameters in the presence of a crossing angle is studied. Due to the crossing angle the central trajectory is deviated in the horizontal plane, preventing the beamstrahlung to be reduced at constant luminosity. However the disruption could be made significantly smaller.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Development and Construction of Cryogenic Permanent Magnet Undulators for ESRF-EBS

    No full text
    International audienceThe ESRF Extremely Brilliant Source (ESRF-EBS) is on operation for Users since August 2020 after 20 months of shutdown. This first of a kind fourth generation high energy synchrotron is based on a Hybrid Multi-Bend Achromat lattice. The main goal of the ESRF-EBS is to reduce the horizontal emittance, which leads to a signifi-cant increase of the X-ray source brilliance. To cover the intensive demand of short period small gap undulators at ESRF-EBS, a new design for a 2 m Cryogenic Permanent Magnet Undulator (CPMU) has been developed. Six CPMUs will be installed in the next years; the first two CPMUs have been constructed and actually used on ID15 and ID16 beamline, the third one is under con-structing. An intensive refurbishment work has been done on the existing insertion devices to adapt them to the new accelerator which has shorter straight section and closer dipoles to the IDs than in the old one. This contribution will review the development, construc-tion and commissioning of the new CPMUs, and the refurbishment work done on the existing ones to adapt them to the new accelerator

    Beam Power Deposition on the Cryogenic Permanent Magnet Undulator

    No full text
    International audienceX-rays with high brilliance and low phase errors are generated in the Cryogenic Permanent Magnet Undulator (CPMU) currently in use at the ESRF. In the event of a failure of the cryogenic cooling the beam will continue to deposit power into the module, even when the undulator jaws are fully opened. This could lead to unacceptably high heating of the magnet blocks which could cause their demagnetisation. Impedance simulations were performed using IW2D and CST to compute the power deposited by the beam in both the closed and open jaw settings. This was followed by thermal simulations to compute the expected temperature rise. These results will help advise the operational procedure in the event of a cooling failure

    Cleaning of Parasitic Bunches for Time Structured Filling of the ESRF Storage Ring During Top Up Operation

    No full text
    International audienceIn order to generate time structured synchrotron radiation the 6GeV ESRF storage ring can be operated with 16 buckets filled with 15nC separated by 16 gaps of 61 nearly perfectly empty buckets. The contrast required by some users between the population of the main and empty buckets is 10¹¹. In order to obtain these empty buckets some RF knock out (cleaning) of the parasitic bunches is needed. Until now this cleaning was performed on the beam stored in the storage ring. Recently we have started to deliver this 16 bunches filling in a so called top up mode, drastically increasing the rate of the storage ring refills. In this top up mode it is very penalizing to perform the cleaning in the storage ring so we are now performing it in the booster synchrotron which accelerates the 200MeV beam coming from the linac up to 6GeV. We describe the set up used to perform the cleaning in the booster and all the measurement and experiments performed in order to correctly understand the origin of the unwanted electrons populating buckets of the gaps separating the 16 main bunches

    Operation Improvements and Emittance Reduction of the ESRF Booster

    No full text
    International audienceThe ESRF storage ring will be replaced by the Extremely Brilliant Source (EBS) in 2020 and the equilibrium emittance will decrease from the present 4 nmrad to 134 pmrad. The current injector system, composed by a linac and a synchrotron booster, will be used to inject into the new storage ring. To increase the injection efficiency in the new storage ring, three methods to reduce the horizontal emittance of the booster have been considered and tested. This paper presents the studies and achievements in terms of operation improvements and emittance reduction
    corecore