15 research outputs found

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Atmospheric Science with Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover

    No full text
    International audienceThe Mars 2020 "Perseverance" rover"s SuperCam instrument suite [1,2,3] provides a wide variety of active and passive remote sensing techniques [4, 5, 6, 7] including passive visible & near-infrared ("VISIR") spectroscopy [8]. Here we present our plans to use the VISIR technique for atmospheric science by observing solar radiation scattered by the Martian sky, similar to the "passive sky" technique demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [9]. Our presentation will focus on the objectives and techniques of SuperCam VISIR atmospheric science, but we will also present initial atmospheric science results or relevant instrument performance validation results to the extent that such are available at the time of the conference.The objectives of VISIR atmospheric science are O2, CO, and H2O vapor column abundances, and aerosol particle sizes and composition. These objectives are motivated by unexpected seasonal and interannual variability in the O2mixing ratio that is argued to be so large as to require O2 sources and sinks in surface soils [10], by evidence of surface-atmosphere exchange of H2O [11], by the potential significance of O2 and H2O volatiles as field context for returned samples due to their active exchanges with surface materials, and by the Mars 2020 mission [12] objectives of characterizing dust and validating global atmospheric models to prepare for human explorationThe SuperCam spectrometers used for VISIR mode are a ChemCam-heritage reflection spectrometer covering 385-465 nm with < 0.2 nm res. [2], an intensified transmission spectrometer covering 536-853 nm with 0.3-0.7 nm res. [2], and an acousto-optic-tunable-filter (AOTF) -based IR spectrometer covering 1300-2600 nm with 20-30 cm-1 res. [1, 8]. Our primary observing strategy is the same approach used for MSL ChemCam "passive sky" observations [9]: ratioing instrument signals from the two pointing positions with different elevation angles eliminates solar spectrum and instrument response uncertainties that are ~100x and ~10x larger than signals of interest for the transmission and AOTF IR spectrometers, respectively. We will also make use of single pointings directed at the white SuperCam calibration target for less-resource-intensive water vapor and aerosol monitoring, and of multiple-pointing lower-signal-to-noise sky scans to better constrain aerosol size and shape. Sky radiance is fit with a discrete ordinates multiple scattering radiative transfer model identical to that of [9]. As in [9] gas abundances are made robust to aerosol scattering uncertainties by fitting CO2 absorption bands with an aerosol vertical profile parameter.References: [1] Maurice S. et al. (2020) SSR, in press. [2] Wiens R.C. et al. (2021) SSR 217, 4. [3] Manrique J.-A. et al. (2020) SSR 216, 138. [4] Ollila A.M. et al. (2021), this meeting. [5] Ollila A.M. et al. (2018) LPSC 49, 2786. [6] Forni O. et al. (2021), this meeting. [7] Lanza N. L. et al. (2021), this meeting. [8] Johnson J.R et al. (2021), this meeting. [9] McConnochie T.H et al. (2018), Icarus 307, 294. [10] Trainer M.G. et al. (2019), JGR 124, 3000. [11] Savijärvi H. et al. (2016), Icarus 265, 63. [12] Farley K.A. et al. (2020), SSR 216, 142

    Atmospheric Science with Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover

    No full text
    International audienceThe Mars 2020 "Perseverance" rover"s SuperCam instrument suite [1,2,3] provides a wide variety of active and passive remote sensing techniques [4, 5, 6, 7] including passive visible & near-infrared ("VISIR") spectroscopy [8]. Here we present our plans to use the VISIR technique for atmospheric science by observing solar radiation scattered by the Martian sky, similar to the "passive sky" technique demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [9]. Our presentation will focus on the objectives and techniques of SuperCam VISIR atmospheric science, but we will also present initial atmospheric science results or relevant instrument performance validation results to the extent that such are available at the time of the conference.The objectives of VISIR atmospheric science are O2, CO, and H2O vapor column abundances, and aerosol particle sizes and composition. These objectives are motivated by unexpected seasonal and interannual variability in the O2mixing ratio that is argued to be so large as to require O2 sources and sinks in surface soils [10], by evidence of surface-atmosphere exchange of H2O [11], by the potential significance of O2 and H2O volatiles as field context for returned samples due to their active exchanges with surface materials, and by the Mars 2020 mission [12] objectives of characterizing dust and validating global atmospheric models to prepare for human explorationThe SuperCam spectrometers used for VISIR mode are a ChemCam-heritage reflection spectrometer covering 385-465 nm with < 0.2 nm res. [2], an intensified transmission spectrometer covering 536-853 nm with 0.3-0.7 nm res. [2], and an acousto-optic-tunable-filter (AOTF) -based IR spectrometer covering 1300-2600 nm with 20-30 cm-1 res. [1, 8]. Our primary observing strategy is the same approach used for MSL ChemCam "passive sky" observations [9]: ratioing instrument signals from the two pointing positions with different elevation angles eliminates solar spectrum and instrument response uncertainties that are ~100x and ~10x larger than signals of interest for the transmission and AOTF IR spectrometers, respectively. We will also make use of single pointings directed at the white SuperCam calibration target for less-resource-intensive water vapor and aerosol monitoring, and of multiple-pointing lower-signal-to-noise sky scans to better constrain aerosol size and shape. Sky radiance is fit with a discrete ordinates multiple scattering radiative transfer model identical to that of [9]. As in [9] gas abundances are made robust to aerosol scattering uncertainties by fitting CO2 absorption bands with an aerosol vertical profile parameter.References: [1] Maurice S. et al. (2020) SSR, in press. [2] Wiens R.C. et al. (2021) SSR 217, 4. [3] Manrique J.-A. et al. (2020) SSR 216, 138. [4] Ollila A.M. et al. (2021), this meeting. [5] Ollila A.M. et al. (2018) LPSC 49, 2786. [6] Forni O. et al. (2021), this meeting. [7] Lanza N. L. et al. (2021), this meeting. [8] Johnson J.R et al. (2021), this meeting. [9] McConnochie T.H et al. (2018), Icarus 307, 294. [10] Trainer M.G. et al. (2019), JGR 124, 3000. [11] Savijärvi H. et al. (2016), Icarus 265, 63. [12] Farley K.A. et al. (2020), SSR 216, 142

    Atmospheric Science with Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover

    No full text
    International audienceThe Mars 2020 "Perseverance" rover"s SuperCam instrument suite [1,2,3] provides a wide variety of active and passive remote sensing techniques [4, 5, 6, 7] including passive visible & near-infrared ("VISIR") spectroscopy [8]. Here we present our plans to use the VISIR technique for atmospheric science by observing solar radiation scattered by the Martian sky, similar to the "passive sky" technique demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [9]. Our presentation will focus on the objectives and techniques of SuperCam VISIR atmospheric science, but we will also present initial atmospheric science results or relevant instrument performance validation results to the extent that such are available at the time of the conference.The objectives of VISIR atmospheric science are O2, CO, and H2O vapor column abundances, and aerosol particle sizes and composition. These objectives are motivated by unexpected seasonal and interannual variability in the O2mixing ratio that is argued to be so large as to require O2 sources and sinks in surface soils [10], by evidence of surface-atmosphere exchange of H2O [11], by the potential significance of O2 and H2O volatiles as field context for returned samples due to their active exchanges with surface materials, and by the Mars 2020 mission [12] objectives of characterizing dust and validating global atmospheric models to prepare for human explorationThe SuperCam spectrometers used for VISIR mode are a ChemCam-heritage reflection spectrometer covering 385-465 nm with < 0.2 nm res. [2], an intensified transmission spectrometer covering 536-853 nm with 0.3-0.7 nm res. [2], and an acousto-optic-tunable-filter (AOTF) -based IR spectrometer covering 1300-2600 nm with 20-30 cm-1 res. [1, 8]. Our primary observing strategy is the same approach used for MSL ChemCam "passive sky" observations [9]: ratioing instrument signals from the two pointing positions with different elevation angles eliminates solar spectrum and instrument response uncertainties that are ~100x and ~10x larger than signals of interest for the transmission and AOTF IR spectrometers, respectively. We will also make use of single pointings directed at the white SuperCam calibration target for less-resource-intensive water vapor and aerosol monitoring, and of multiple-pointing lower-signal-to-noise sky scans to better constrain aerosol size and shape. Sky radiance is fit with a discrete ordinates multiple scattering radiative transfer model identical to that of [9]. As in [9] gas abundances are made robust to aerosol scattering uncertainties by fitting CO2 absorption bands with an aerosol vertical profile parameter.References: [1] Maurice S. et al. (2020) SSR, in press. [2] Wiens R.C. et al. (2021) SSR 217, 4. [3] Manrique J.-A. et al. (2020) SSR 216, 138. [4] Ollila A.M. et al. (2021), this meeting. [5] Ollila A.M. et al. (2018) LPSC 49, 2786. [6] Forni O. et al. (2021), this meeting. [7] Lanza N. L. et al. (2021), this meeting. [8] Johnson J.R et al. (2021), this meeting. [9] McConnochie T.H et al. (2018), Icarus 307, 294. [10] Trainer M.G. et al. (2019), JGR 124, 3000. [11] Savijärvi H. et al. (2016), Icarus 265, 63. [12] Farley K.A. et al. (2020), SSR 216, 142

    Atmospheric Science with Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover

    No full text
    International audienceThe Mars 2020 "Perseverance" rover"s SuperCam instrument suite [1,2,3] provides a wide variety of active and passive remote sensing techniques [4, 5, 6, 7] including passive visible & near-infrared ("VISIR") spectroscopy [8]. Here we present our plans to use the VISIR technique for atmospheric science by observing solar radiation scattered by the Martian sky, similar to the "passive sky" technique demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [9]. Our presentation will focus on the objectives and techniques of SuperCam VISIR atmospheric science, but we will also present initial atmospheric science results or relevant instrument performance validation results to the extent that such are available at the time of the conference.The objectives of VISIR atmospheric science are O2, CO, and H2O vapor column abundances, and aerosol particle sizes and composition. These objectives are motivated by unexpected seasonal and interannual variability in the O2mixing ratio that is argued to be so large as to require O2 sources and sinks in surface soils [10], by evidence of surface-atmosphere exchange of H2O [11], by the potential significance of O2 and H2O volatiles as field context for returned samples due to their active exchanges with surface materials, and by the Mars 2020 mission [12] objectives of characterizing dust and validating global atmospheric models to prepare for human explorationThe SuperCam spectrometers used for VISIR mode are a ChemCam-heritage reflection spectrometer covering 385-465 nm with < 0.2 nm res. [2], an intensified transmission spectrometer covering 536-853 nm with 0.3-0.7 nm res. [2], and an acousto-optic-tunable-filter (AOTF) -based IR spectrometer covering 1300-2600 nm with 20-30 cm-1 res. [1, 8]. Our primary observing strategy is the same approach used for MSL ChemCam "passive sky" observations [9]: ratioing instrument signals from the two pointing positions with different elevation angles eliminates solar spectrum and instrument response uncertainties that are ~100x and ~10x larger than signals of interest for the transmission and AOTF IR spectrometers, respectively. We will also make use of single pointings directed at the white SuperCam calibration target for less-resource-intensive water vapor and aerosol monitoring, and of multiple-pointing lower-signal-to-noise sky scans to better constrain aerosol size and shape. Sky radiance is fit with a discrete ordinates multiple scattering radiative transfer model identical to that of [9]. As in [9] gas abundances are made robust to aerosol scattering uncertainties by fitting CO2 absorption bands with an aerosol vertical profile parameter.References: [1] Maurice S. et al. (2020) SSR, in press. [2] Wiens R.C. et al. (2021) SSR 217, 4. [3] Manrique J.-A. et al. (2020) SSR 216, 138. [4] Ollila A.M. et al. (2021), this meeting. [5] Ollila A.M. et al. (2018) LPSC 49, 2786. [6] Forni O. et al. (2021), this meeting. [7] Lanza N. L. et al. (2021), this meeting. [8] Johnson J.R et al. (2021), this meeting. [9] McConnochie T.H et al. (2018), Icarus 307, 294. [10] Trainer M.G. et al. (2019), JGR 124, 3000. [11] Savijärvi H. et al. (2016), Icarus 265, 63. [12] Farley K.A. et al. (2020), SSR 216, 142

    Atmospheric Science with Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover

    No full text
    International audienceThe Mars 2020 "Perseverance" rover"s SuperCam instrument suite [1,2,3] provides a wide variety of active and passive remote sensing techniques [4, 5, 6, 7] including passive visible & near-infrared ("VISIR") spectroscopy [8]. Here we present our plans to use the VISIR technique for atmospheric science by observing solar radiation scattered by the Martian sky, similar to the "passive sky" technique demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [9]. Our presentation will focus on the objectives and techniques of SuperCam VISIR atmospheric science, but we will also present initial atmospheric science results or relevant instrument performance validation results to the extent that such are available at the time of the conference.The objectives of VISIR atmospheric science are O2, CO, and H2O vapor column abundances, and aerosol particle sizes and composition. These objectives are motivated by unexpected seasonal and interannual variability in the O2mixing ratio that is argued to be so large as to require O2 sources and sinks in surface soils [10], by evidence of surface-atmosphere exchange of H2O [11], by the potential significance of O2 and H2O volatiles as field context for returned samples due to their active exchanges with surface materials, and by the Mars 2020 mission [12] objectives of characterizing dust and validating global atmospheric models to prepare for human explorationThe SuperCam spectrometers used for VISIR mode are a ChemCam-heritage reflection spectrometer covering 385-465 nm with < 0.2 nm res. [2], an intensified transmission spectrometer covering 536-853 nm with 0.3-0.7 nm res. [2], and an acousto-optic-tunable-filter (AOTF) -based IR spectrometer covering 1300-2600 nm with 20-30 cm-1 res. [1, 8]. Our primary observing strategy is the same approach used for MSL ChemCam "passive sky" observations [9]: ratioing instrument signals from the two pointing positions with different elevation angles eliminates solar spectrum and instrument response uncertainties that are ~100x and ~10x larger than signals of interest for the transmission and AOTF IR spectrometers, respectively. We will also make use of single pointings directed at the white SuperCam calibration target for less-resource-intensive water vapor and aerosol monitoring, and of multiple-pointing lower-signal-to-noise sky scans to better constrain aerosol size and shape. Sky radiance is fit with a discrete ordinates multiple scattering radiative transfer model identical to that of [9]. As in [9] gas abundances are made robust to aerosol scattering uncertainties by fitting CO2 absorption bands with an aerosol vertical profile parameter.References: [1] Maurice S. et al. (2020) SSR, in press. [2] Wiens R.C. et al. (2021) SSR 217, 4. [3] Manrique J.-A. et al. (2020) SSR 216, 138. [4] Ollila A.M. et al. (2021), this meeting. [5] Ollila A.M. et al. (2018) LPSC 49, 2786. [6] Forni O. et al. (2021), this meeting. [7] Lanza N. L. et al. (2021), this meeting. [8] Johnson J.R et al. (2021), this meeting. [9] McConnochie T.H et al. (2018), Icarus 307, 294. [10] Trainer M.G. et al. (2019), JGR 124, 3000. [11] Savijärvi H. et al. (2016), Icarus 265, 63. [12] Farley K.A. et al. (2020), SSR 216, 142

    First atmospheric results produced by the SuperCam instrument on Mars2020

    No full text
    International audienceThe SuperCam instrument [1,2] onboard Mars2020 disposes of a variety of active and passive techniques, including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3 to 2.6 microns (IR, [3,4]) wavelength ranges. Since the landing on Mars of Perseverance in February 2021, Supercam has acquired numerous observations of its near and distant environment, exploring the geological and mineralogical context of Jezero crater. In addition, several measurements were devoted to probing the atmosphere surrounding the Perseverance rover. The technique of using sky spectra in passive mode, known as "passive sky", has already been demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [4]. SuperCam provides a superset of the ChemCam capabilities used in [4], and in particular adds a near-infrared component that includes absorption and scattering characteristics of key gases and aerosols/clouds. "Passive sky" measurements have typically been performed every other week to allow a consistent monitoring of the seasonal evolution of the main quantities (CO2, O2, H2O, CO, aerosols/clouds). Particular attention was given to joint measurements of O2 and CO, as they appear as key components of the Martian chemical cycle and have never been measured together at the same time on the surface of Mars. As the 2 m wavelength region is used for the first time at the surface of Mars, it enables the detection of CO (around 2.35 m). CO possesses a small absorption that has made it difficult to identify in SuperCam spectra so far. An overview of SuperCam's progress to date in its attempt to characterize the Martian atmosphere at Jezero will be presented. References : [1] Wiens, R.C., et al. , 2021. Space Sci Rev 217, 4, [2] Maurice, S., et al., 2021. Space Sci Rev 217, 47, [3] Royer, C., et al.., 2020. Review of Scientific Instruments 91, 063105, [4] Fouchet, T., et al., 2021, Icarus, submitted. [5] McConnochie T. H et al., 2018. Icarus 307, 29

    First atmospheric results produced by the SuperCam instrument on Mars2020

    No full text
    International audienceThe SuperCam instrument [1,2] onboard Mars2020 disposes of a variety of active and passive techniques, including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3 to 2.6 microns (IR, [3,4]) wavelength ranges. Since the landing on Mars of Perseverance in February 2021, Supercam has acquired numerous observations of its near and distant environment, exploring the geological and mineralogical context of Jezero crater. In addition, several measurements were devoted to probing the atmosphere surrounding the Perseverance rover. The technique of using sky spectra in passive mode, known as "passive sky", has already been demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [4]. SuperCam provides a superset of the ChemCam capabilities used in [4], and in particular adds a near-infrared component that includes absorption and scattering characteristics of key gases and aerosols/clouds. "Passive sky" measurements have typically been performed every other week to allow a consistent monitoring of the seasonal evolution of the main quantities (CO2, O2, H2O, CO, aerosols/clouds). Particular attention was given to joint measurements of O2 and CO, as they appear as key components of the Martian chemical cycle and have never been measured together at the same time on the surface of Mars. As the 2 m wavelength region is used for the first time at the surface of Mars, it enables the detection of CO (around 2.35 m). CO possesses a small absorption that has made it difficult to identify in SuperCam spectra so far. An overview of SuperCam's progress to date in its attempt to characterize the Martian atmosphere at Jezero will be presented. References : [1] Wiens, R.C., et al. , 2021. Space Sci Rev 217, 4, [2] Maurice, S., et al., 2021. Space Sci Rev 217, 47, [3] Royer, C., et al.., 2020. Review of Scientific Instruments 91, 063105, [4] Fouchet, T., et al., 2021, Icarus, submitted. [5] McConnochie T. H et al., 2018. Icarus 307, 29

    First atmospheric results produced by the SuperCam instrument on Mars2020

    No full text
    International audienceThe SuperCam instrument [1,2] onboard Mars2020 disposes of a variety of active and passive techniques, including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3 to 2.6 microns (IR, [3,4]) wavelength ranges. Since the landing on Mars of Perseverance in February 2021, Supercam has acquired numerous observations of its near and distant environment, exploring the geological and mineralogical context of Jezero crater. In addition, several measurements were devoted to probing the atmosphere surrounding the Perseverance rover. The technique of using sky spectra in passive mode, known as "passive sky", has already been demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [4]. SuperCam provides a superset of the ChemCam capabilities used in [4], and in particular adds a near-infrared component that includes absorption and scattering characteristics of key gases and aerosols/clouds. "Passive sky" measurements have typically been performed every other week to allow a consistent monitoring of the seasonal evolution of the main quantities (CO2, O2, H2O, CO, aerosols/clouds). Particular attention was given to joint measurements of O2 and CO, as they appear as key components of the Martian chemical cycle and have never been measured together at the same time on the surface of Mars. As the 2 m wavelength region is used for the first time at the surface of Mars, it enables the detection of CO (around 2.35 m). CO possesses a small absorption that has made it difficult to identify in SuperCam spectra so far. An overview of SuperCam's progress to date in its attempt to characterize the Martian atmosphere at Jezero will be presented. References : [1] Wiens, R.C., et al. , 2021. Space Sci Rev 217, 4, [2] Maurice, S., et al., 2021. Space Sci Rev 217, 47, [3] Royer, C., et al.., 2020. Review of Scientific Instruments 91, 063105, [4] Fouchet, T., et al., 2021, Icarus, submitted. [5] McConnochie T. H et al., 2018. Icarus 307, 29
    corecore