144 research outputs found

    Evolution under strong balancing selection: how many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceae?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular lock-and-key systems are common among reproductive proteins, yet their evolution remains a major puzzle in evolutionary biology. In the Brassicaceae, the genes encoding self-incompatibility have been identified, but technical challenges currently prevent detailed analyses of the molecular interaction between the male and female components. In the present study, we investigate sequence polymorphism in the female specificity determinant <it>SRK </it>of <it>Arabidopsis halleri </it>from throughout Europe. Using a comparative approach based on published <it>SRK </it>sequences in <it>A. lyrata </it>and Brassica, we track the signature of frequency-dependent selection acting on these genes at the codon level. Using simulations, we evaluate power and accuracy of our approach and estimate the proportion of codon sites involved in the molecular interaction.</p> <p>Results</p> <p>We identified several members of the S-gene family, together with 22 putative S-haplotypes. Linkage to the S-locus and the presence of a kinase domain were formally demonstrated for four and six of these haplotypes, respectively, and sequence polymorphism was extremely high. Twenty-five codons showed signs of positive selection in at least one species, and clustered significantly (but not exclusively) within hypervariable regions. We checked that this clustering was not an artifact due to variation in evolution rate at synonymous sites. Simulations revealed that the analysis was highly accurate, thus providing a reliable set of candidates for future functional analyses, but with an overall power not higher than 60 %. Assuming similar power, we infer from our results that about 23% of all codons in the S-domain may actually be involved in recognition. Interestingly, while simulations demonstrated that this comparison remained reliable even at very high levels of divergence, codons identified in Brassica had higher posterior rates of non-synonymous to synonymous substitutions than codons identified in <it>A. halleri or A. lyrata</it>, possibly suggesting more intense selection in Brassica.</p> <p>Conclusion</p> <p>The signature of balancing selection can be identified reliably at the codon level even in cases of very high sequence divergence, provided that a sufficiently large set of sequences are analyzed. Altogether, our results indicate that a large proportion of codons may be involved in recognition and confirm the particular importance of hypervariable regions. The more intense signature of positive selection detected in Brassica suggests that allelic diversification in this genus was very recent, possibly following a recent demographic bottleneck.</p

    Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata

    Get PDF
    Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems

    Evidence for convergent nucleotide evolution and high allelic turnover rates at the complementary sex determiner (csd) gene of western and Asian honey bees

    Get PDF
    Our understanding of the impact of recombination, mutation, genetic drift and selection on the evolution of a single gene is still limited. Here we investigate the impact of all of these evolutionary forces at the complementary sex determiner (csd) gene which evolves under a balancing mode of selection. Females are heterozygous at the csd gene and males are hemizygous; diploid males are lethal and occur when csd is homozygous. Rare alleles thus have a selective advantage, are seldom lost by the effect of genetic drift and are maintained over extended periods of time when compared to neutral polymorphisms. Here, we report on the analysis of 17, 19 and 15 csd alleles of Apis cerana, Apis dorsata and Apis mellifera honey bees respectively. We observed great heterogeneity of synonymous (pi S) and nonsynonymous (pi N) polymorphisms across the gene, with a consistent peak in exon 6 and 7. We propose that exons 6 and 7 encode the potential specifying domain (csd-PSD) which has accumulated elevated nucleotide polymorphisms over time by balancing selection. We observed no direct evidence that balancing selection favors the accumulation of nonsynonymous changes at csd-PSD (pi N/pi S ratios are all < 1, ranging from 0.6 to 0.95). We observed an excess of shared nonsynonymous changes, which suggests that strong evolutionary constraints are operating at csd-PSD resulting in the independent accumulation of the same nonsynonymous changes in different alleles across species (convergent evolution). Analysis of a csd-PSD genealogy revealed relatively short average coalescence times (~6 million years), low average synonymous nucleotide diversity (pi S < 0.09) and a lack of trans-specific alleles which substantially contrasts with previously analyzed loci under strong balancing selection. We excluded the possibility of a burst of diversification after population bottlenecking and intragenic recombination as explanatory factors, leaving high turn-over rates as the explanation for this observation. By comparing observed allele richness and average coalescence times with a simplified model of csd-coalescence, we found that small long term population sizes (i.e. Ne <104), but not high mutation rates, can explain short maintenance times, implicating a strong impact of genetic drift on the molecular evolution of highly social honey bees

    Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the self-incompatibility system of Olea europaea L.

    Get PDF
    open7siBervillΓ© et al. express concern about the existence of the diallelic self-incompatibility (DSI) system in Olea europaea, mainly because our model does not account for results from previous studies from their group that claimed to have documented asymmetry of the incompatibility response in reciprocal crosses. In this answer to their comment, we present original results based on reciprocal stigma tests that contradict conclusions from these studies. We show that, in our hands, not a single case of asymmetry was confirmed, endorsing that symmetry of incompatibility reactions seems to be the rule in Olive. We discuss three important aspects that were not taken into account in the studies cited in their comments and that can explain the discrepancy: (i) the vast uncertainty around the actual genetic identity of vernacular varieties, (ii) the risk of massive contamination associated with the pollination protocols that they used and (iii) the importance of checking for stigma receptivity in controlled crosses. These studies were thus poorly genetically controlled, and we stand by our original conclusion that Olive tree exhibits DSI.openSaumitou-Laprade, Pierre; Vernet, Philippe; Vekemans, Xavier; Castric, Vincent; Barcaccia, Gianni; Khadari, Bouchaib; Baldoni, LucianaSaumitou-Laprade, Pierre; Vernet, Philippe; Vekemans, Xavier; Castric, Vincent; Barcaccia, Gianni; Khadari, Bouchaib; Baldoni, Lucian

    Repeated Adaptive Introgression at a Gene under Multiallelic Balancing Selection

    Get PDF
    Recently diverged species typically have incomplete reproductive barriers, allowing introgression of genetic material from one species into the genomic background of the other. The role of natural selection in preventing or promoting introgression remains contentious. Because of genomic co-adaptation, some chromosomal fragments are expected to be selected against in the new background and resist introgression. In contrast, natural selection should favor introgression for alleles at genes evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, or self-incompatibility genes in plants. Here, we test the prediction that negative, frequency-dependent selection on alleles at the multi-allelic gene controlling pistil self-incompatibility specificity in two closely related species, Arabidopsis halleri and A. lyrata, caused introgression at this locus at a higher rate than the genomic background. Polymorphism at this gene is largely shared, and we have identified 18 pairs of S-alleles that are only slightly divergent between the two species. For these pairs of S-alleles, divergence at four-fold degenerate sites (Kβ€Š=β€Š0.0193) is about four times lower than the genomic background (Kβ€Š=β€Š0.0743). We demonstrate that this difference cannot be explained by differences in effective population size between the two types of loci. Rather, our data are most consistent with a five-fold increase of introgression rates for S-alleles as compared to the genomic background, making this study the first documented example of adaptive introgression facilitated by balancing selection. We suggest that this process plays an important role in the maintenance of high allelic diversity and divergence at the S-locus in flowering plant families. Because genes under balancing selection are expected to be among the last to stop introgressing, their comparison in closely related species provides a lower-bound estimate of the time since the species stopped forming fertile hybrids, thereby complementing the average portrait of divergence between species provided by genomic data

    Adaptive divergence in shell morphology in an ongoing gastropod radiation from Lake Malawi

    Get PDF
    Background Ecological speciation is a prominent mechanism of diversification but in many evolutionary radiations, particularly in invertebrates, it remains unclear whether supposedly critical ecological traits drove or facilitated diversification. As a result, we lack accurate knowledge on the drivers of diversification for most evolutionary radiations along the tree of life. Freshwater mollusks present an enigmatic example: Putatively adaptive radiations are being described in various families, typically from long-lived lakes, whereas other taxa represent celebrated model systems in the study of ecophenotypic plasticity. Here we examine determinants of shell-shape variation in three nominal species of an ongoing ampullariid radiation in the Malawi Basin (Lanistes nyassanus, L. solidus and Lanistes sp. (ovum-like)) with a common garden experiment and semi-landmark morphometrics. Results We found significant differences in survival and fecundity among these species in contrasting habitats. Morphological differences observed in the wild persisted in our experiments for L. nyassanus versus L. solidus and L. sp. (ovum-like), but differences between L. solidus and L. sp. (ovum-like) disappeared and re-emerged in the F-1 and F-2 generations, respectively. These results indicate that plasticity occurred, but that it is not solely responsible for the observed differences. Our experiments provide the first unambiguous evidence for genetic divergence in shell morphology in an ongoing freshwater gastropod radiation in association with marked fitness differences among species under controlled habitat conditions. Conclusions Our results indicate that differences in shell morphology among Lanistes species occupying different habitats have an adaptive value. These results also facilitate an accurate reinterpretation of morphological variation in fossil Lanistes radiations, and thus macroevolutionary dynamics. Finally, our work testifies that the shells of freshwater gastropods may retain signatures of adaptation at low taxonomic levels, beyond representing an evolutionary novelty responsible for much of the diversity and disparity in mollusks altogether

    Contrasted Patterns of Molecular Evolution in Dominant and Recessive Self-Incompatibility Haplotypes in Arabidopsis

    Get PDF
    Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae

    Does Speciation between Arabidopsis halleri and Arabidopsis lyrata Coincide with Major Changes in a Molecular Target of Adaptation?

    Get PDF
    Ever since Darwin proposed natural selection as the driving force for the origin of species, the role of adaptive processes in speciation has remained controversial. In particular, a largely unsolved issue is whether key divergent ecological adaptations are associated with speciation events or evolve secondarily within sister species after the split. The plant Arabidopsis halleri is one of the few species able to colonize soils highly enriched in zinc and cadmium. Recent advances in the molecular genetics of adaptation show that the physiology of this derived ecological trait involves copy number expansions of the AhHMA4 gene, for which orthologs are found in single copy in the closely related A. lyrata and the outgroup A. thaliana. To gain insight into the speciation process, we ask whether adaptive molecular changes at this candidate gene were contemporary with important stages of the speciation process. We first inferred the scenario and timescale of speciation by comparing patterns of variation across the genomic backgrounds of A. halleri and A. lyrata. Then, we estimated the timing of the first duplication of AhHMA4 in A. halleri. Our analysis suggests that the historical split between the two species closely coincides with major changes in this molecular target of adaptation in the A. halleri lineage. These results clearly indicate that these changes evolved in A. halleri well before industrial activities fostered the spread of Zn- and Cd-polluted areas, and suggest that adaptive processes related to heavy-metal homeostasis played a major role in the speciation process

    Evolution of plant breeding systems: armeria maritima Mill.(Willd.) as a study case

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
    • …
    corecore