47 research outputs found

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Leucine-rich glioma-inactivated 1 versus contactin-associated protein-like 2 antibody neuropathic pain: clinical and biological comparisons

    No full text
    Pain is a under-recognized association of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies. Of 147 patients with these autoantibodies, pain was experienced by 17 of 33 (52%) with CASPR2- versus 20 of 108 (19%) with LGI1 antibodies (p = 0.0005), and identified as neuropathic in 89% versus 58% of these, respectively. Typically, in both cohorts, normal nerve conduction studies and reduced intraepidermal nerve fiber densities were observed in the sampled patient subsets. In LGI1 antibody patients, pain responded to immunotherapy (p = 0.008), often rapidly, with greater residual patient-rated impairment observed in CASPR2 antibody patients (p = 0.019). Serum CASPR2 antibodies, but not LGI1 antibodies, bound in vitro to unmyelinated human sensory neurons and rodent dorsal root ganglia, suggesting pathophysiological differences that may underlie our clinical observations

    Long-term alterations of striatal parvalbumin interneurons in a rat model of early exposure to alcohol.

    Get PDF
    BACKGROUND: Exposure to alcohol in utero is a known cause of mental retardation. Although a certain degree of motor impairment is always associated with fetal alcohol spectrum disorder, little is known about the neurobiological basis of the defective motor control. We have studied the striatal interneurons containing parvalbumin in a rat model of fetal alcohol spectrum disorder. METHODS: Newborn rats received ethanol by inhalation from postnatal day two through six and parvalbumin striatal neurons were labeled by immunohistochemistry on postnatal day 60. The spatial distribution of parvalbumin interneurons was studied using Voronoi spatial tessellation and their dendritic trees were completely reconstructed. RESULTS: Parvalbumin interneurons of ethanol-treated animals showed a clustered spatial distribution similar to that observed in control animals. The dendritic tree of parvalbumin interneurons was significantly reduced in ethanol-treated animals, as compared with controls. CONCLUSIONS: Striatal parvalbumin interneurons are crucial components of the brain network serving motor control. Therefore, the shrinkage of their dendrites could contribute to the motor and cognitive symptoms observed in fetal alcohol spectrum disorder
    corecore