1,509 research outputs found

    Network conduciveness with application to the graph-coloring and independent-set optimization transitions

    Full text link
    We introduce the notion of a network's conduciveness, a probabilistically interpretable measure of how the network's structure allows it to be conducive to roaming agents, in certain conditions, from one portion of the network to another. We exemplify its use through an application to the two problems in combinatorial optimization that, given an undirected graph, ask that its so-called chromatic and independence numbers be found. Though NP-hard, when solved on sequences of expanding random graphs there appear marked transitions at which optimal solutions can be obtained substantially more easily than right before them. We demonstrate that these phenomena can be understood by resorting to the network that represents the solution space of the problems for each graph and examining its conduciveness between the non-optimal solutions and the optimal ones. At the said transitions, this network becomes strikingly more conducive in the direction of the optimal solutions than it was just before them, while at the same time becoming less conducive in the opposite direction. We believe that, besides becoming useful also in other areas in which network theory has a role to play, network conduciveness may become instrumental in helping clarify further issues related to NP-hardness that remain poorly understood

    Enumerating Cyclic Orientations of a Graph

    Get PDF
    Acyclic and cyclic orientations of an undirected graph have been widely studied for their importance: an orientation is acyclic if it assigns a direction to each edge so as to obtain a directed acyclic graph (DAG) with the same vertex set; it is cyclic otherwise. As far as we know, only the enumeration of acyclic orientations has been addressed in the literature. In this paper, we pose the problem of efficiently enumerating all the \emph{cyclic} orientations of an undirected connected graph with nn vertices and mm edges, observing that it cannot be solved using algorithmic techniques previously employed for enumerating acyclic orientations.We show that the problem is of independent interest from both combinatorial and algorithmic points of view, and that each cyclic orientation can be listed with O~(m)\tilde{O}(m) delay time. Space usage is O(m)O(m) with an additional setup cost of O(n2)O(n^2) time before the enumeration begins, or O(mn)O(mn) with a setup cost of O~(m)\tilde{O}(m) time

    Compressibility of titanosilicate melts

    Get PDF
    The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility

    The unmasking of Pneumocystis jiroveci pneumonia during reversal of immunosuppression: Case reports and literature review

    Get PDF
    Background: Pneumocystis jiroveci pneumonia (PCP) is an important opportunistic infection among immunosuppressed patients, especially in those infected with human immunodeficiency virus (HIV). The clinical presentation of PCP in immunosuppressed patients have been well-reported in the literature. However, the clinical importance of PCP manifesting in the setting of an immunorestitution disease (IRD), defined as an acute symptomatic or paradoxical deterioration of a (presumably) preexisting infection, which is temporally related to the recovery of the immune system and is due to immunopathological damage associated with the reversal of immunosuppressive processes, has received relatively little attention until recently. Case presentation: We aim to better define this unique clinical syndrome by reporting two cases of PCP manifesting acutely with respiratory failure during reversal of immunosuppression in non-HIV infected patients, and reviewed the relevant literature. We searched our databases for PCP cases manifesting in the context of IRD according to our predefined case definition, and reviewed the case notes retrospectively. A comprehensive search was performed using the Medline database of the National Library of Medicine for similar cases reported previously in the English literature in October 2003. A total of 28 non-HIV (excluding our present case) and 13 HIV-positive patients with PCP manifesting as immunorestitution disease (IRD) have been reported previously in the literature. During immunorestitution, a consistent rise in the median CD4 lymphocyte count (28/μL to 125/μL), with a concomitant fall in the median HIV viral load (5.5 log10 copies/ml to 3.1 log10 copies/ml) was observed in HIV-positive patients who developed PCP. A similar upsurge in peripheral lymphocyte count was observed in our patients preceding the development of PCP, as well as in other non-HIV immunosuppressed patients reported in the literature. Conclusions: PCP manifesting as IRD may be more common than is generally appreciated. Serial monitoring of total lymphocyte or CD4 count could serve as a useful adjunct to facilitate the early diagnosis and pre-emptive treatment of this condition in a wide range of immunosuppressed hosts, especially in the presence of new pulmonary symptoms and/or radiographic abnormalities compatible with the diagnosis. © 2004 Wu et al; licensee BioMed Central Ltd.published_or_final_versio

    Electronic Devices Based on Purified Carbon Nanotubes Grown By High Pressure Decomposition of Carbon Monoxide

    Full text link
    The excellent properties of transistors, wires, and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems. Gas-phase growth procedures such as the high pressure decomposition of carbon monoxide (HiPCO) method yield large quantities of small diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade properties of SWNT devices. Here we demonstrate a purification, deposition, and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source-drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.Comment: 6 pages, 4 figures, to appear in Nature Material

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Effectiveness, cost-effectiveness and cost-benefit of a single annual professional intervention for the prevention of childhood dental caries in a remote rural Indigenous community

    Get PDF
    Background The aim of the study is to reduce the high prevalence of tooth decay in children in a remote, rural Indigenous community in Australia, by application of a single annual dental preventive intervention. The study seeks to (1) assess the effectiveness of an annual oral health preventive intervention in slowing the incidence of dental caries in children in this community, (2) identify the mediating role of known risk factors for dental caries and (3) assess the cost-effectiveness and cost-benefit of the intervention. Methods/design The intervention is novel in that most dental preventive interventions require regular re-application, which is not possible in resource constrained communities. While tooth decay is preventable, self-care and healthy habits are lacking in these communities, placing more emphasis on health services to deliver an effective dental preventive intervention. Importantly, the study will assess cost-benefit and cost-effectiveness for broader implementation across similar communities in Australia and internationally. Discussion There is an urgent need to reduce the burden of dental decay in these communities, by implementing effective, cost-effective, feasible and sustainable dental prevention programs. Expected outcomes of this study include improved oral and general health of children within the community; an understanding of the costs associated with the intervention provided, and its comparison with the costs of allowing new lesions to develop, with associated treatment costs. Findings should be generalisable to similar communities around the world. The research is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), registration number ACTRN12615000693527; date of registration: 3rd July 2015

    Novel homozygous missense mutation in GAN associated with Charcot-Marie-Tooth disease type 2 in a large consanguineous family from Israel.

    Get PDF
    BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone

    Liquid metal nanodroplet dynamics inside nanocontainers

    Get PDF
    Here we report direct observations of spatial movements of nanodroplets of Pb metal trapped inside sealed carbon nanocontainers. We find drastic changes in the mobility of the liquid droplets as the particle size increases from a few to a few ten nanometers. In open containers the droplet becomes immobile and readily evaporates to the vacuum environment. The particle mobility strongly depends on confinement, particle size, and wetting on the enclosed surface. The collisions between droplets increase mobility but the tendency is reversed if collisions lead to droplet coalescence. The dynamics of confined nanodroplets could provide new insights into the activity of nanostructures in spatially constrained geometries

    Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src

    Get PDF
    Abstract The tyrosine kinase, c-Src, participates in mu opioid receptor (MOP) mediated inhibition in sensory neurons in which β-arrestin2 (β-arr2) is implicated in its recruitment. Mice lacking β-arr2 exhibit increased sensitivity to morphine reinforcement; however, whether β-arr2 and/or c-Src participate in the actions of opioids in neurons within the reward pathway is unknown. It is also unclear whether morphine acts exclusively through MOPs, or involves delta opioid receptors (DOPs). We examined the involvement of MOPs, DOPs, β-arr2 and c-Src in the inhibition by morphine of GABAergic inhibitory postsynaptic currents (IPSCs) recorded from neurons in the mouse ventral tegmental area. Morphine inhibited spontaneous IPSC frequency, mainly through MOPs, with only a negligible effect remaining in MOP−/− neurons. However, a reduction in the inhibition by morphine for DOP−/− c.f. WT neurons and a DPDPE-induced decrease of IPSC frequency revealed a role for DOPs. The application of the c-Src inhibitor, PP2, to WT neurons also reduced inhibition by morphine, while the inactive PP3, and the MEK inhibitor, SL327, had no effect. Inhibition of IPSC frequency by morphine was also reduced in β-arr2−/− neurons in which PP2 caused no further reduction. These data suggest that inhibition of IPSCs by morphine involves a β-arr2/c-Src mediated mechanism
    corecore