46 research outputs found

    Structure and dynamics of the shark assemblage off recife, northeastern Brazil

    Get PDF
    Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.State Government of Pernambuco, Brazil; Fundacao para a Ciencia e Tecnologia, Portugal [SFRH/BD/37065/2007]info:eu-repo/semantics/publishedVersio

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    Assessing chemical mechanisms underlying the effects of sunflower pollen on a gut pathogen in bumble bees

    Get PDF
    Many pollinator species are declining due to a variety of interacting stressors including pathogens, sparking interest in understanding factors that could mitigate these outcomes. Diet can affect host-pathogen interactions by changing nutritional reserves or providing bioactive secondary chemicals. Recent work found that sunflower pollen (Helianthus annuus) dramatically reduced cell counts of the gut pathogen Crithidia bombi in bumble bee workers (Bombus impatiens), but the mechanism underlying this effect is unknown. Here we analyzed methanolic extracts of sunflower pollen by LC-MS and identified triscoumaroyl spermidines as the major secondary metabolite components, along with a flavonoid quercetin-3-O-hexoside and a quercetin-3-O-(6-O-malonyl)-hexoside. We then tested the effect of triscoumaroyl spermidine and rutin (as a proxy for quercetin glycosides) on Crithidia infection in B. impatiens, compared to buckwheat pollen (Fagopyrum esculentum) as a negative control and sunflower pollen as a positive control. In addition, we tested the effect of nine fatty acids from sunflower pollen individually and in combination using similar methods. Although sunflower pollen consistently reduced Crithidia relative to control pollen, none of the compounds we tested had significant effects. In addition, diet treatments did not affect mortality, or sucrose or pollen consumption. Thus, the mechanisms underlying the medicinal effect of sunflower are still unknown; future work could use bioactivity-guided fractionation to more efficiently target compounds of interest, and explore non-chemical mechanisms. Ultimately, identifying the mechanism underlying the effect of sunflower pollen on pathogens will open up new avenues for managing bee health

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur
    corecore