104 research outputs found

    Monitoring van paraffine-achtige stoffen op Nederlandse stranden en in magen van Noordse Stormvogels

    Get PDF
    Within the KB-Program System Earth Management 2018 (KB-24-002-036) a pilot study was conducted into options to monitor of paraffin- or palmfat-like substances on Dutch beaches and in stomachs of corpses of beached Northern Fulmars. Such substances are, in part legally, discharged by tanker ships cleaning their tanks at sea.Paraffin was chemically identified by the presence of alkanes in the samples. It remains to be investigated in detail which other mineral oil derivatives may show similar alkane patterns. In the absence of alkanes further analyses were conducted to assess the type of material involved.Samples taken from beaches showed to be paraffin in 30 of 32 analyses (94%). One sample contained palmoil related substances, one sample remained unclear but contained phthalates (eg used as plastic softeners). The materials from bird stomachs proved to be different. Paraffin was only found in 31% of 32 samples. In 41% of the stomachs vegetable fatty substances were demonstrated, usually palm oil related. The remainder of samples had an uncertain mix of vegetable and animal fats. The difference between beaches and bird stomachs may have several backgrounds, including attraction for wildlife, melting points, and biodegradability.Over 20% of fulmars found in the Netherlands has chemical suspect materials in the stomach. Not much is known about potential health impacts. Over the years no clear changes can be detected. Quantities of material ingested are highly variable. Frequency of occurrence may slightly reduce over the more recent years, but there is no statistically significant trend. It would make sense to add records on chemical suspect materials in fulmar stomachs to the existing monitoring of plastics in the framework of OSPAR and the EU Marine Strategy Framework Directive. Clearly chemical analyses of substances encountered on beaches and in birds is additionally recommended

    Contaminants in northern fulmars (Fulmarus glacialis) exposed to plastic

    Get PDF
    Northern fulmars are seabirds which feed exclusively at sea, and as such, they are useful indicators of ocean health. Marine plastic pollution is an ever-increasing and global issue that affects the northern fulmar as they are frequently found to have ingested plastic. In this report we investigate whether the amount of ingested plastic affects the concentration of certain plastic-adsorbed toxicants in their tissues. Marine plastic pollution is a field of utmost importance. It is our hope that this continues to be an area which receives increased attention in order to elucidate the potential harmful effects plastics have on the northern fulmar and ocean health, in general

    Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean

    Get PDF
    One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both directly from underneath the sea ice in the Eurasian Basin and in open waters around Svalbard. We analysed the stomachs of 72 individuals under a stereo microscope. Two stomachs contained non-fibrous microplastic particles. According to µFTIR analysis, the particles consisted of epoxy resin and a mix of Kaolin with polymethylmethacrylate (PMMA). Fibrous objects were excluded from this analysis to avoid bias due to contamination with airborne micro-fibres. A systematic investigation of the risk for secondary micro-fibre contamination during analytical procedures showed that precautionary measures in all procedural steps are critical. Based on the two non-fibrous objects found in polar cod stomachs, our results show that ingestion of microplastic particles by this ecologically important fish species is possible. With increasing human activity, plastic ingestion may act as an increasing stressor on polar cod in combination with ocean warming and sea-ice decline in peripheral regions of the Arctic Ocean. To fully assess the significance of this stressor and its spatial and temporal variability, future studies must apply a rigorous approach to avoid secondary pollution

    Harm caused by Marine Litter

    Get PDF
    Marine litter is a global concern with a range of problems associated to it, as recognised by the Marine Strategy Framework Directive (MSFD). Marine litter can impact organisms at different levels of biological organization and habitats in a number of ways namely: through entanglement in, or ingestion of, litter items by individuals, resulting in death and/or severe suffering; through chemical and microbial transfer; as a vector for transport of biota and by altering or modifying assemblages of species. Marine litter is a threat not only to marine species and ecosystems but also carries a risk to human health and has significant implications to human welfare, impacting negatively vital economic sectors such as tourism, fisheries, aquaculture or energy supply and bringing economic losses to individuals, enterprises and communities. This technical report aims to provide clear insight about the major negative impacts from marine litter by describing the mechanisms of harm. Further it provides reflexions about the evidence for harm from marine litter to biota comprising the underlying aspect of animal welfare while also considering the socioeconomic effects, including the influence of marine litter on ecosystem services. General conclusions highlight that understanding the risks and uncertainties with regard to the harm caused by marine litter is closely associated with the precautionary principle. The collected evidence in this report can be regarded as a supporting step to define harm and to provide an evidence base for the various actions needed to be implemented by decision-makers. This improved knowledge about the scale of the harmful effects of marine litter will further support EU Member States (MSs) and Regional Seas Conventions (RSCs) to implement their programme of measures, regional action plans and assessments.JRC.D.2-Water and Marine Resource

    Ice-fuelled food webs in the Polar Oceans

    Get PDF
    The Arctic Ocean is undergoing substantial warming and sea ice loss which are likely to cause changes in primary production, export fluxes and productivity of the Arctic marine ecosystems. Yet, we lack sufficient information about the ecosystem productivity, organic carbon cycling and cryo-pelago-benthic coupling processes in the Arctic Ocean. Particularly such information is scarce for deep Arctic basins and the spring to summer transition time. Our aim was to provide carbon budget estimations under different regimes and bloom development stages in the region north of Svalbard. We conducted ecological and biogeochemical early spring process studies in sea ice covered areas, from the shelf to the basins of the European Arctic margin and on the Yermak Plateau during the TRANSSIZ cruise PS 92 on the ice breaker R/V Polarstern in May/June 2015. We identified the potential characteristics of carbon production of primary producers in the sea ice and water column, and secondary production of zooplankton and benthos. We looked into the organic carbon production fate and export, including respiration and burial, as well as identified similarities and differences in ecosystem functioning along topography- , sea ice- and water mass-related gradients. This scientific initiative was undertaken by Arctic in Rapid Transition (ART) International Arctic Science Committee (IASC) network
    • …
    corecore