131 research outputs found
History and author analysis of the World Congresses on Genetics Applied to Livestock Production
It is almost fifty years since the first World Congress on Genetics Applied to Livestock Production (WCGALP) was convened in Spain in 1974. This paper, targeted for the early-career scientist session, details the history and evolution of WCGALP, and outlines gender composition of the Permanent International Committee, session chairs, plenary and invited speakers, and authors. Data containing 24,351 author records from all WCGALP proceedings, and old programs were used for the analyses. In the early years, there were few women involved in any aspect of WCGALP, however, more recent congresses have featured an increasing proportion of women on WCGALP committees and serving as session chairs. Based on recent data, gender is not playing a determining role in selection of submitted papers for oral presentations. We recommend greater gender diversity on WCGALP committees and encourage early-career scientists to actively participate in WCGALP conferences to further increase the diversity of future congresses
Efficient one-step knockout by electroporation of ribonucleoproteins into zona-intact bovine embryos.
Somatic cell nuclear transfer or cytoplasm microinjection have been used to generate genome-edited farm animals; however, these methods have several drawbacks that reduce their efficiency. This study aimed to develop electroporation conditions that allow delivery of CRISPR/Cas9 system to bovine zygotes for efficient gene knockout. We optimized electroporation conditions to deliver Cas9:sgRNA ribonucleoproteins to bovine zygotes without compromising embryo development. Higher electroporation pulse voltage resulted in increased membrane permeability; however, voltages above 15 V/mm decreased embryo developmental potential. The zona pellucida of bovine embryos was not a barrier to efficient RNP electroporation. Using parameters optimized for maximal membrane permeability while maintaining developmental competence we achieved high rates of gene editing when targeting bovine OCT4, which resulted in absence of OCT4 protein in 100% of the evaluated embryos and the expected arrest of embryonic development at the morula stage. In conclusion, Cas9:sgRNA ribonucleoproteins can be delivered efficiently by electroporation to zona-intact bovine zygotes, resulting in efficient gene knockouts
The accuracies of DNA-based estimates of genetic merit derived from Angus or multibreed beef cattle training populations
Several organizations have developed prediction models for molecular breeding values (MBV) for quantitative growth and carcass traits in beef cattle using Bovine SNP50 genotypes and phenotypic or EBV data. Molecular breeding values for Angus cattle have been developed by IGENITY, Pfi zer Animal Genetics, and a collaboration between researchers from Iowa State University and the University of Missouri-Columbia (ISU/UMC). The U.S. Meat Animal Research Center (USMARC; Clay Center, NE) has also developed MBV for 16 cattle breeds using 2 multibreed populations, the Germplasm Evaluation (GPE) Program and the 2,000 Bull Project (2KALL), and 2 single breed subpopulations of the 2,000 Bull Project, Angus (2KAN) and Hereford (2KHH). In this study, these MBV were assessed relative to commercial ranch EBV estimated from the progeny phenotypes of Angus bulls naturally mated in multisire breeding pastures to commercial cows: 121 for USMARC MBV, 99 for ISU/UMC MBV, and 29 for IGENITY and Pfizer MBV (selected based on number of progeny carcass records). Five traits were analyzed: weaning weight (WW), HCW, marbling score (MS), rib-eye muscle area (RE), and, for IGENITY and Pfi zer only, feedlot ADG. The average accuracies of MBV across traits were 0.38 ± 0.05 for IGENITY, 0.61 ± 0.12 for Pfizer, 0.46 ± 0.12 for ISU/UMC, 0.16 ± 0.04 for GPE, 0.26 ± 0.05 for 2KALL, 0.24 ± 0.04 for 2KAN, and 0.02 ± 0.12 for 2KHH. Angus-based MBV (IGENITY, Pfizer, ISU/UMC, and 2KAN) explained larger proportions of genetic variance in this population than GPE, 2KALL, or 2KHH MBV for the same traits. In this data set, IGENITY, Pfizer, and ISU/UMC MBV were predictive of realized performance of progeny, and incorporation of that information into national genetic evaluations would be expected to improve EPD accuracy, particularly for young animals
Genome-wide association study of concentrations of iron and other minerals in longissimus muscle of Angus cattle1
The objective of this study was to characterize variation and identify SNP and chromosomal regions associated with mineral concentrations in LM of Angus beef cattle. Samples of LM from 2,285 Angus cattle were obtained and concentrations of seven minerals including iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc were quantified. Genomic DNA extracted from the ground beef sample used for mineral composition was genotyped with the Bovine SNP50 Infinium II BeadChip and effects of SNP on each trait were estimated using the Bayes-CÏ€ module of GenSel software. Pedigree-based estimates of heritabilities and corresponding genetic variances indicate iron was the only mineral concentration, which could be considered a good candidate for manipulation by genomic selection. The amount of variation that could be accounted for by SNP genotypes was concordant with pedigree-based heritabilities and varied from very low for potassium and sodium (< 0.09) to medium-high (0.37) for iron. Though significant chromosomal regions were identified for all minerals analyzed in this study, further study focused on iron. Seven regions on six chromosomes (1, 2, 7, 10, 15 and 28) were identified to have major effect on iron content of LM in Angus cattle. The accuracy of direct genomic values (DGV) for iron concentration was estimated using a five-fold cross-validation strategy. The accuracy of DGV estimated as the genetic correlation between DGV and the phenotype (iron concentration) adjusted for contemporary groups was 0.59. A bivariate animal model was used to estimate genetic correlations between iron concentrations and a reduced set of economically important carcass traits: HCW, ribeye area, calculated USDA yield grade, percent KPH, and marbling score. The genetic correlations between iron concentration and HCW, percentage KPH, marbling score and ribeye area were small (-0.19 - 0.15) and non-significant. Although still weak (0.22), a positive significant genetic correlation was identified between iron content and USDA calculated yield grade. Beef is a major contributor of iron and zinc in the human diet, and this study found that iron content might be effectively manipulated through marker-assisted selection programs, without compromising other carcass and palatability traits
Comparison of Gene Editing Versus Conventional Breeding to Introgress the POLLED Allele Into the Tropically Adapted Australian Beef Cattle Population
Dehorning is the process of physically removing horns to protect animals and humans from injury, but the process is costly, unpleasant, and faces increasing public scrutiny. Genetic selection for polled (hornless), which is genetically dominant to horned, is a long-term solution to eliminate the need for dehorning. However, due to the limited number of polled Australian Brahman bulls, the northern Australian beef cattle population remains predominantly horned. The potential to use gene editing to produce high-genetic-merit polled cattle was recently demonstrated. To further explore the concept, this study simulated introgression of the POLLED allele into a tropically adapted Australian beef cattle population via conventional breeding or gene editing (top 1% or 10% of seedstock bulls/year) for 3 polled mating schemes and compared results to baseline selection on genetic merit (Japan Ox selection index, 8.00/year). Compared to the baseline, the conventional breeding scenarios where polled bulls were preferentially used for breeding, regardless of their genetic merit, significantly decreased the 20-year HORNED allele frequency (30%), but resulted in a significantly slower rate of genetic gain (5.50/year). The addition of gene editing the top 1% or 10% of seedstock bull calves/year to each conventional breeding scenario resulted in significantly faster rates of genetic gain (up to $8.10/year, P ≤ 0.05). Overall, our study demonstrates that, due to the limited number of polled Australian Brahman bulls, strong selection pressure on polled will be necessary to meaningfully increase the number of polled animals in this population. Moreover, these scenarios illustrate how gene editing could be a tool for accelerating the development of high-genetic-merit homozygous polled sires to mitigate the current trade-off of slower genetic gain associated with decreasing HORNED allele frequency in the Australian Brahman population
Size matters: a view of selenocysteine incorporation from the ribosome
This review focuses on the known factors required for selenocysteine (Sec) incorporation in eukaryotes and highlights recent findings that have compelled us to propose a new model for the mechanism of Sec incorporation. In light of this data we also review the controversial aspects of the previous modelspecifically regarding the proposed interaction between SBP2 and eEFSec. In addition, the relevance of two recently discovered factors in the recoding of Sec are reviewed. The role of the ribosome in this process is emphasized along with a detailed analysis of kinkturn structures present in the ribosome and the L7Ae RNA-binding motif present in SBP2 and other proteins
Implementation of a parentage control system in Portuguese beef-cattle with a panel of microsatellite markers
A study was conducted to assess the feasibility of applying a panel of 10 microsatellite markers in parentage control of beef cattle in Portugal. In the first stage, DNA samples were collected from 475 randomly selected animals of the Charolais, Limousin and Preta breeds. Across breeds and genetic markers, means for average number of alleles, effective number of alleles, expected heterozygosity and polymorphic information content, were 8.20, 4.43, 0.733 and 0.70, respectively. Enlightenment from the various markers differed among breeds, but the set of 10 markers resulted in a combined probability above 0.9995 in the ability to exclude a random putative parent. The marker-set thus developed was later used for parentage control in a group of 140 calves from several breeds, where there was the suspicion of possible faulty parentage recording. Overall, 76.4% of the calves in this group were compatible with the recorded parents, with most incompatibilities due to misidentification of the dam. Efforts must be made to improve the quality of pedigree information, with particular emphasis on information recorded at the calf's birth
Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis
<p>Abstract</p> <p>Background</p> <p>Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>.</p> <p>Results</p> <p>We have identified the previously 'missing' <it>Giardia </it>RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs.</p> <p>Conclusions</p> <p>Results indicate that <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.</p
- …