15 research outputs found

    Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)

    Get PDF
    Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research

    RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing

    Get PDF
    RNA interference (RNAi) can be used for the protection against agricultural pests through the silencing of genes required for pest fitness. To assess the potential of RNAi approaches in the two-spotted spider mite, Tetranychus urticae, we compared 5 methods for the delivery of double-stranded RNA (dsRNA). These methods include mite feeding on either (i) leaves floating on a dsRNA solution, (ii) dsRNA-expressing plants, (iii) artificial diet supplemented with dsRNA, or (iv) dsRNA-coated leaves, and (v) mite soaking in a dsRNA solution. In all cases, the gene targeted for method validation was the Vacuolar-type H+-ATPase (TuVATPase), encoding a constitutively expressed ATP-driven proton pump located in the membrane. Down-regulation of TuVATPase increased mortality and/or reduced fecundity in all methods, but with variable efficiency. The most efficient methods for dsRNA delivery were direct soaking of mites in the dsRNA solution and mite feeding on dsRNA-coated leaves that mimics dsRNA application as a sprayable pesticide. Both resulted in a dark-body phenotype not observed in mites treated with a control dsRNA. Although with lower efficiency, dsRNA designed for TuVATPase silencing and expressed in transgenic Arabidopsis plants impacted the fitness of mites feeding on these plants. RNAi may thus be a valuable strategy to control spider mite populations, either as a sprayable pesticide or through transgenic crops. This comparative methodological study focusing on the induction of RNAi-based gene silencing in T. urticae paves the way for reverse genetics approaches in this model chelicerate system and prepares large-scale systematic RNAi screens as a first step towards the development of specific RNA-based pesticides. Such alternative molecules may help control spider mites that cause significant damages to crops and ornamental plant species, as well as other chelicerates detrimental to agriculture and health. © 2017 Suzuki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The control of eriophyoid mites: state of the art and future challenges

    No full text
    The superfamily of the Eriophyoidea is a large and diverse group of mites, including a number of species of economic importance, mainly on perennial plants in agriculture and forestry. This review focuses on the economic importance and pest status of this group of mites, with emphasis on some genera. The available acaricide portfolio is reviewed and the influence of EU legislation policy on the sustainable control of Eriophyoidea is investigated. Possible generic guidelines for sustainable control and resistance management with special reference to the European situation are discussed. Recent advances in biological and integrated control of eriophyid mite pests and the implementation of these techniques in crops are explored. Furthermore, the relevance of studies on behaviour, epidemiology and diagnostics in general terms and as a strategic necessity is pointed out
    corecore