210 research outputs found

    Synthesis and characterization of a novel organic nitrate NDHP: Role of xanthine oxidoreductase-mediated nitric oxide formation

    Get PDF
    In this report, we describe the synthesis and characterization of 1,3-bis(hexyloxy)propan-2-yl nitrate (NDHP), a novel organic mono nitrate. Using purified xanthine oxidoreductase (XOR), chemiluminescence and electron paramagnetic resonance (EPR) spectroscopy, we found that XOR catalyzes nitric oxide (NO) generation from NDHP under anaerobic conditions, and that thiols are not involved or required in this process. Further mechanistic studies revealed that NDHP could be reduced to NO at both the FAD and the molybdenum sites of XOR, but that the FAD site required an unoccupied molybdenum site. Conversely, the molybdenum site was able to reduce NDHP independently of an active FAD site. Moreover, using isolated vessels in a myograph, we demonstrate that NDHP dilates pre-constricted mesenteric arteries from rats and mice. These effects were diminished when XOR was blocked using the selective inhibitor febuxostat. Finally, we demonstrate that NDHP, in contrast to glyceryl trinitrate (GTN), is not subject to development of tolerance in isolated mesenteric arteries.</p

    Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica

    Get PDF
    The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. γ-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes were endorsed to cost-effect this compound production. One of the best-known methods to produce -decalactone is from ricinoleic acid catalyzed by Yarrowia lipolytica, a generally regarded as safe status yeast. As yet, several factors affecting -decalactone production remain to be fully understood and optimized. In this review, we focus on the aromatic compound -decalactone and its production by Y. lipolytica. The metabolic pathway of lactone production and degradation are addressed. Critical analysis of novel strategies of bioprocess engineering, metabolic and genetic engineering and other strategies for the enhancement of the aroma productivity are presented.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684)

    Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin – resistant Staphylococcus aureus by Turnera ulmifolia L

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus </it>genus is widely spread in nature being part of the indigenous microbiota of skin and mucosa of animal and birds. Some <it>Staphylococcus </it>species are frequently recognized as etiological agents of many animal and human opportunistic infections This is the first report testing the antibiotic resistance-modifying activity of <it>Turnera ulmifolia </it>against methicillin-resistant <it>Staphylococcus aureus </it>– MRSA strain.</p> <p>Methods</p> <p>In this study an ethanol extract of <it>Turnera ulmifolia </it>L. and chlorpromazine were tested for their antimicrobial activity alone or in combination with aminoglycosides against an MRSA strain.</p> <p>Results</p> <p>The synergism of the ethanol extract and aminoglycosides were verified using microdillution method. A synergistic effect of this extract on gentamicin and kanamycin was demonstrated. Similarly, a potentiating effect of chlorpromazine on kanamycin, gentamicin and neomycin, indicating the involvement of an efflux system in the resistance to these aminoglycosides.</p> <p>Conclusion</p> <p>It is therefore suggested that extracts from <it>Turnera ulmifolia </it>could be used as a source of plant-derived natural products with resistance-modifying activity, constituting a new weapon against the problem of bacterial resistance to antibiotics demonstrated in MRSA strains.</p

    Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity

    Get PDF
    BACKGROUND:The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF) and dengue hemorrhagic fever (DHF) patients and found that the level of complement activation is associated with disease severity. METHODS AND RESULTS:Patients with DHF had lower levels of complement factor 3 (C3; p = 0.002) and increased levels of C3a, C4a and C5a (p<0.0001) when compared to those with the less severe form, DF. There were no significant differences between DF and DHF patients in the levels of C1q, immunocomplexes (CIC-CIq) and CRP. However, small but statistically significant differences were detected in the levels of MBL. In contrast, the levels of two regulatory proteins of the alternative pathway varied widely between DF and DHF patients: DHF patients had higher levels of factor D (p = 0.01), which cleaves factor B to yield the active (C3bBb) C3 convertase, and lower levels of factor H (p = 0.03), which inactivates the (C3bBb) C3 convertase, than did DF patients. When we considered the levels of factors D and H together as an indicator of (C3bBb) C3 convertase regulation, we found that the plasma levels of these regulatory proteins in DHF patients favored the formation of the (C3bBb) C3 convertase, whereas its formation was inhibited in DF patients (p<0.0001). CONCLUSION:The data suggest that an imbalance in the levels of regulatory factors D and H is associated with an abnormal regulation of complement activity in DHF patients
    corecore