129 research outputs found

    МодСль прогнозирования ΠΈ управлСния ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ Ρ€ΠΎΠ΄Π°ΠΌΠΈ

    Get PDF
    Background: It seems relevant to study the contribution of socio-demographic, somatic and obstetric-gynecological factors in the implementation of preterm birth. Aims: Assessment of the prognostic significance of socio-demographic, obstetric-gynecological and somatic factors in the prediction of preterm birth and associated adverse pregnancy outcomes with subsequent validation of the prognostic model. Materials and methods: Cohort study with a mixed cohort. A retrospective assessment of socio-demographic factors, harmful habits, obstetric and gynecological pathology, somatic diseases, course and outcomes of pregnancy was carried out with the assessment of the status of newborns in 1246 women with subsequent construction of a predictive model of preterm birth and adverse outcomes of pregnancy using Regression with Optimal Scaling and its prospective validation in 100 women. Results: The most significant predictors, that increase the chance of preterm birth and adverse pregnancy outcomes, were history of premature birth, irregular monitoring during pregnancy, history of pelvic inflammatory disease, smoking, obesity, the onset of sexual activity up to 16 years, cardiovascular and endocrine diseases. Intellectual job reduced the chance of preterm birth and adverse pregnancy outcomes This multivariate predictive model has a diagnostic value. The score of risk factors 25 points had a sensitivity of 73%, a specificity of 71%, the area under the ROC curve (AUC) 0.76 (good quality), p0.001. After stratification of high-risk groups by maternal and perinatal pathology the following list of diagnostic and therapeutic measures is introduced and actively implemented in antenatal clinics. To stratificate this model, we prospectively analyze the course and pregnancy outcomes of 100 women divided into 2 groups: group 1 ― 50 women with preterm delivery, group 2 ― 50 women with term delivery. A total score of 25 and above had 44% of women in group 1 and only 10% of women in group 2 (sensitivity 81.4%, specificity 61.6%, positive predictive value 44%, negative predictive value 90%, positive likelihood ratio 2.2 [1.53.0], negative likelihood ratio 0.3 [0.130.68]). Conclusions: We have proposed a model for predicting preterm birth and delivery and perinatal losses using the available characteristics of pregnant women from early pregnancy with moderate indicators of diagnostic value. Further validation of the model in the general population of pregnant women is required.ОбоснованиС. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΠ΅Ρ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²ΠΊΠ»Π°Π΄Π° ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-дСмографичСских, соматичСских ΠΈ Π°ΠΊΡƒΡˆΠ΅Ρ€ΡΠΊΠΎ-гинСкологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ². ЦСль исслСдования ― ΠΎΡ†Π΅Π½ΠΊΠ° значимости ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-дСмографичСских, Π°ΠΊΡƒΡˆΠ΅Ρ€ΡΠΊΠΎ-гинСкологичСских ΠΈ соматичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ² ΠΈ ассоциированных с Π½ΠΈΠΌΠΈ нСблагоприятных исходов бСрСмСнности с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ прогностичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠšΠΎΠ³ΠΎΡ€Ρ‚Π½ΠΎΠ΅ исслСдованиС со ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ участников. ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ рСтроспСктивная ΠΎΡ†Π΅Π½ΠΊΠ° ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-дСмографичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Ρ€Π΅Π΄Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ²Ρ‹Ρ‡Π΅ΠΊ, соматичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, гинСкологичСской ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ, тСчСния ΠΈ исходов бСрСмСнности для Π½ΠΎΠ²ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… Ρƒ 1246 ΠΆΠ΅Π½Ρ‰ΠΈΠ½ с Ρ†Π΅Π»ΡŒΡŽ построСния ΠΌΠΎΠ΄Π΅Π»ΠΈ прогнозирования ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ² ΠΈ нСблагоприятных исходов бСрСмСнности ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ рСгрСссионного Π°Π½Π°Π»ΠΈΠ·Π° с ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΡˆΠΊΠ°Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈ Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρƒ 100 ΠΆΠ΅Π½Ρ‰ΠΈΠ½. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. НаиболСС Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌΠΈ ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ риск ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ² ΠΈ нСблагоприятных исходов бСрСмСнности, оказались ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ Ρ€ΠΎΠ΄Ρ‹ Π² Π°Π½Π°ΠΌΠ½Π΅Π·Π΅, нСрСгулярноС наблюдСниС Π²ΠΎ врСмя бСрСмСнности, Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ заболСвания ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΌΠ°Π»ΠΎΠ³ΠΎ Ρ‚Π°Π·Π° Π² Π°Π½Π°ΠΌΠ½Π΅Π·Π΅, ΠΊΡƒΡ€Π΅Π½ΠΈΠ΅, ΠΎΠΆΠΈΡ€Π΅Π½ΠΈΠ΅, Π½Π°Ρ‡Π°Π»ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ Π΄ΠΎ 16 Π»Π΅Ρ‚, сСрдСчно-сосудистыС ΠΈ эндокринныС заболСвания. ΠŸΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»Π° риск ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ² ΠΈ ассоциированных с Π½ΠΈΠΌΠΈ нСблагоприятных исходов. Данная прогностичСская модСль продСмонстрировала Π΄ΠΈΠ°Π³Π½ΠΎΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈ подсчСтС 25 ΠΈ Π±ΠΎΠ»Π΅Π΅ Π±Π°Π»Π»ΠΎΠ² модСль ΠΈΠΌΠ΅Π»Π° Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 73%, ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ 71%, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ ROC-ΠΊΡ€ΠΈΠ²ΠΎΠΉ (AUC) 0,76 (качСство Ρ…ΠΎΡ€ΠΎΡˆΠ΅Π΅), Ρ€0,001. ПослС стратификации Π³Ρ€ΡƒΠΏΠΏ высокого риска ΠΏΠΎ матСринской ΠΈ ΠΏΠ΅Ρ€ΠΈΠ½Π°Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² условиях ТСнской ΠΊΠΎΠ½ΡΡƒΠ»ΡŒΡ‚Π°Ρ†ΠΈΠΈ Π²Π½Π΅Π΄Ρ€Π΅Π½ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ проводится ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ диагностичСских ΠΈ Π»Π΅Ρ‡Π΅Π±Π½ΠΎ-профилактичСских мСроприятий. Π‘ Ρ†Π΅Π»ΡŒΡŽ стратификации ΠΌΠΎΠ΄Π΅Π»ΠΈ проспСктивно ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ исходы бСрСмСнности Ρƒ 100 ΠΆΠ΅Π½Ρ‰ΠΈΠ½, Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° 2 Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎ 50 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ, Ρ‡ΡŒΡ Π±Π΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Π·Π°ΠΊΠΎΠ½Ρ‡ΠΈΠ»Π°ΡΡŒ ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ своСврСмСнными Ρ€ΠΎΠ΄Π°ΠΌΠΈ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ 1 суммарный Π±Π°Π»Π» 25 ΠΈΠΌΠ΅Π»ΠΈ 44% ΠΆΠ΅Π½Ρ‰ΠΈΠ½, Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ 2 ― Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 10% ΠΆΠ΅Π½Ρ‰ΠΈΠ½ (Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 81,4%, ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ 61,6%, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ прогностичСская Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ 44%, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ прогностичСская Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ 90%, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ правдоподобия 2,2 [1,53,0], ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ правдоподобия 0,3 [0,130,68]). Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Нами ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль прогнозирования ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠ΅Ρ€ΠΈΠ½Π°Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Ρ€ΡŒ с использованиСм доступных характСристик Π±Π΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΆΠ΅Π½Ρ‰ΠΈΠ½ с Ρ€Π°Π½Π½ΠΈΡ… сроков бСрСмСнности с ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ показатСлями диагностичСской значимости. ВрСбуСтся дальнСйшая валидизация ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° большСй популяции Π±Π΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΆΠ΅Π½Ρ‰ΠΈΠ½

    Magnetic fields in the early universe in the string approach to MHD

    Get PDF
    There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field generated during the radiation-dominated era in the early Universe. Causality dictates that the field lines form a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnection, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted form of the power spectrum, and discuss insights gained from the string approximation, in particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure

    Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals

    Full text link
    Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolution the detection system. We report on tests of lead tungstate crystals, read out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or pion beams. The beam electrons themselves were used to measure the scintillation light output, and a blue light emitting diode (LED) was used to track variations of crystals transparency. We report on the correlation of the LED measurement with radiation damage by the beams and also show that it can accurately monitor the crystals recovery from such damage.Comment: 9 pages, 6 figures, LaTeX2

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs Ξ³\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change

    Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    Full text link
    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.Comment: 10 pages, 6 figures, LaTeX2

    Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion

    Full text link
    We describe a unification of several apparently unrelated factorizations arisen from quantum field theory, vertex operator algebras, combinatorics and numerical methods in differential equations. The unification is given by a Birkhoff type decomposition that was obtained from the Baker-Campbell-Hausdorff formula in our study of the Hopf algebra approach of Connes and Kreimer to renormalization in perturbative quantum field theory. There we showed that the Birkhoff decomposition of Connes and Kreimer can be obtained from a certain Baker-Campbell-Hausdorff recursion formula in the presence of a Rota-Baxter operator. We will explain how the same decomposition generalizes the factorization of formal exponentials and uniformization for Lie algebras that arose in vertex operator algebra and conformal field theory, and the even-odd decomposition of combinatorial Hopf algebra characters as well as to the Lie algebra polar decomposition as used in the context of the approximation of matrix exponentials in ordinary differential equations.Comment: accepted for publication in Comm. in Math. Phy

    Excitation of medium nuclei in the continuum region in inelastic scattering of deuterons

    No full text
    Experiments on elastic and inelastic scattering of deuterons by ΒΉΒ²C, ⁴⁸Ti, ⁡⁸;⁢⁴Ni nuclei at laboratory energy of 37 MeV for angles ranging from 16Β° to 61Β° were carried out on the U-240 isochronous cyclotron of the Institute for Nuclear Research, National Academy of Science of Ukraine. A broad maximum comprising the giant resonance in the spectrum of scattered deuterons for scattering angles less than 21Β° is observed at the nucleus excitation energies ranging from 12 to 30 MeV. The observed maximum was theoretically described in diffraction approximation after summing the cross-section over all final nucleus states.Π’ΠΈΠΊΠΎΠ½Π°Π½ΠΎ СкспСримСнти Π· ΠΏΡ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ Ρ‚Π° Π½Π΅ΠΏΡ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ розсіяння Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½Ρ–Π² ядрами ΒΉΒ²C, ⁴⁸Ti, ⁡⁸;⁢⁴Ni ΠΏΡ€ΠΈ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— 37 ΠœΠ΅Π’ Π½Π° ΠΊΡƒΡ‚ΠΈ Π²Ρ–Π΄ 16Β° Π΄ΠΎ 61Β° Π½Π° Ρ–Π·ΠΎΡ…Ρ€ΠΎΠ½Π½ΠΎΠΌΡƒ Ρ†ΠΈΠΊΠ»ΠΎΡ‚Ρ€ΠΎΠ½Ρ– Π£-240 Інституту ядСрних Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ НАН Π£ΠΊΡ€Π°Ρ—Π½ΠΈ. Π’ Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ спСктрі розсіяних Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½Ρ–Π² для ΠΊΡƒΡ‚Ρ–Π² розсіяння мСншС 21Β° ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ максимум ΠΏΡ€ΠΈ СнСргіях збудТСння ядСр Π²Ρ–Π΄ 12 Π΄ΠΎ 30 ΠœΠ΅Π’, який Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” Π² сСбС максимум Π³Ρ–Π³Π°Π½Ρ‚ΡΡŒΠΊΠΎΠ³ΠΎ рСзонансу. Π¨ΠΈΡ€ΠΎΠΊΠΈΠΉ максимум Π±ΡƒΠ»ΠΎ описано Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎ Π² Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†Ρ–ΠΉΠ½ΠΎΠΌΡƒ Π½Π°Π±Π»ΠΈΠΆΠ΅Π½Π½Ρ– після підсумовування ΠΏΠ΅Ρ€Π΅Ρ€Ρ–Π·Ρƒ Π·Π° всіма ΠΊΡ–Π½Ρ†Π΅Π²ΠΈΠΌΠΈ ядСрними станами.Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ экспСримСнты ΠΏΠΎ ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΌΡƒ ΠΈ Π½Π΅ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΌΡƒ Ρ€Π°ΡΡΠ΅ΡΠ½ΠΈΡŽ Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² ядрами ΒΉΒ²C, ⁴⁸Ti, ⁡⁸;⁢⁴Ni ΠΏΡ€ΠΈ энСргии 37 ΠœΡΠ’ Π½Π° ΡƒΠ³Π»Ρ‹ ΠΎΡ‚ 16Β° Π΄ΠΎ 61Β° Π½Π° ΠΈΠ·ΠΎΡ…Ρ€ΠΎΠ½Π½ΠΎΠΌ Ρ†ΠΈΠΊΠ»ΠΎΡ‚Ρ€ΠΎΠ½Π΅ Π£-240 Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° ядСрных исслСдований НАН Π£ΠΊΡ€Π°ΠΈΠ½Ρ‹. Π’ энСргСтичСском спСктрС рассСянных Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² для ΡƒΠ³Π»ΠΎΠ² рассСяния мСньшС 21Β° Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ максимум ΠΏΡ€ΠΈ энСргиях возбуТдСния ядСр ΠΎΡ‚ 12 Π΄ΠΎ 30 ΠœΡΠ’, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ Π² сСбя максимум гигантского рСзонанса. Π¨ΠΈΡ€ΠΎΠΊΠΈΠΉ максимум Π±Ρ‹Π» описан тСорСтичСски Π² Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ послС суммирования сСчСния ΠΏΠΎ всСм ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ ядСрным состояниям

    Elastic deuteron-triton scattering AT 37MeV

    No full text
    Results of measurement of differential cross section of elastic scattering of deuterons by tritons at the laboratory energy of 37 MeV for the center-of-mass angles ΞΈc.m. ranging from 25Β° to 150Β° are presented. The experiment is carried out on the U-240 isochronous cyclotron of the Institute for Nuclear Research, National Academy of Science of Ukraine. Obtained experimental data is analyzed theoretically in the framework of microscopic nuclear diffraction model. Angular distributions of deuterons in a region of the main maximum (ΞΈc.m. ≀ 60Β° ) are described quite well at deuteron energies of 14.4, 37.0 and 39.9 MeV . An explanation of a broad secondary maximum emerging at low deuteron energies is proposed using the phenomenological quasiclassical approximation. The quasiclassical approximation allows to describe the angular distributions only qualitatively at large angles 60Β° < ΞΈc.m. < 150Β°, where the cross sections are quite small.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π²ΠΈΠΌiΡ€ΡŽΠ²Π°Π½Π½Ρ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†iΠ°Π»ΡŒΠ½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ€iΠ·iΠ² ΠΏΡ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ розсiяння Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½iΠ² Π· Π΅Π½Π΅Ρ€Π³iΡ”ΡŽ Ed = 37, 0 ΠœΠ΅Π’ Π½Π° Ρ‚Ρ€ΠΈΡ‚ΠΎΠ½Π°Ρ… Ρƒ Π΄iΠ°ΠΏΠ°Π·ΠΎΠ½i ΠΊΡƒΡ‚iΠ² розсiяння 25Β° ≀ ΞΈc.m. ≀ 150Β° . ЕкспСримСнт Π²ΠΈΠΊΠΎ- Π½Π°Π½ΠΎ Π½Π° iΠ·ΠΎΡ…Ρ€ΠΎΠ½Π½ΠΎΠΌΡƒ Ρ†ΠΈΠΊΠ»ΠΎΡ‚Ρ€ΠΎΠ½i Π£-240 IΠ―Π” НАН Π£ΠΊΡ€Π°Ρ—Π½ΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΉ Π°Π½Π°Π»iΠ· ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Π΄Π°Π½ΠΈΡ… Π² ΠΌΠ΅ΠΆΠ°Ρ… ΠΌiкроскопiΡ‡Π½ΠΎΡ— Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†iΠΉΠ½ΠΎΡ— ядСрної ΠΌΠΎΠ΄Π΅Π»i. ΠšΡƒΡ‚ΠΎΠ²i Ρ€ΠΎΠ·ΠΏΠΎΠ΄iΠ»ΠΈ Π΄Π΅ΠΉ- Ρ‚Ρ€ΠΎΠ½iΠ² Π² областi Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ максимуму (ΞΈc.m. ≀ 60Β° ) Π·Π°Π΄ΠΎΠ²iльно ΠΎΠΏΠΈΡΡƒΡŽΡ‚ΡŒΡΡ ΠΏΡ€ΠΈ Π΅Π½Π΅Ρ€Π³iях Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½iΠ² 14, 4; 37, 0 Ρ‚Π° 39, 9 ΠœΠ΅Π’. Завдяки Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚Π°Π½Π½ΡŽ Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΠ³iΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π·iкласичного наблиТСння вдалося пояснити ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ появи ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π²Ρ‚ΠΎΡ€ΠΈΠ½Π½ΠΎΠ³ΠΎ максимуму ΠΏΡ€ΠΈ Π½ΠΈΠ·ΡŒΠΊΠΈΡ… Π΅Π½Π΅Ρ€Π³iях Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½iΠ². КвазiΠΊΠ»Π°- сичнС наблиТСння дозволяє лишС якiсно описати ΠΊΡƒΡ‚ΠΎΠ²i Ρ€ΠΎΠ·ΠΏΠΎΠ΄iΠ»ΠΈ Π½Π° Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΊΡƒΡ‚Π°Ρ… 60Β° ≀ ΞΈc.m. ≀ 150Β°, Π΄Π΅ ΠΏΠ΅Ρ€Π΅Ρ€iΠ·ΠΈ Π΄ΠΎΡΠΈΡ‚ΡŒ ΠΌΠ°Π»i.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… сСчСний ΡƒΠΏΡ€ΡƒΠ³ΠΎΠ³ΠΎ рассСяния Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² с энСргиСй Ed = 37 ΠœΡΠ’ Π½Π° Ρ‚Ρ€ΠΈΡ‚ΠΎΠ½Π°Ρ… Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡƒΠ³Π»ΠΎΠ² рассСяния 25Β° ≀ ΞΈc.m. ≀ 150Β° . ЭкспСримСнт Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π½Π° ΠΈΠ·ΠΎΡ…Ρ€ΠΎΠ½Π½ΠΎΠΌ Ρ†ΠΈΠΊΠ»ΠΎΡ‚Ρ€ΠΎΠ½Π΅ Π£-240 ИЯИ НАН Π£ΠΊΡ€Π°ΠΈΠ½Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ тСорСтичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎ- Π»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π² Ρ€Π°ΠΌΠΊΠ°Ρ… микроскопичСской Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ ядСрной ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π£Π³Π»ΠΎΠ²Ρ‹Π΅ распрСдСлСния Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² Π² области Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ максимума (ΞΈc.m. ≀ 60Β°) достаточно Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ энСргиях Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² 14, 4; 37, 0 Ρ‚Π° 39, 9 ΠœΡΠ’. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ с использованиСм фСмСнологичСского квазиклассичСского приблиТСния объяснСниС появлСния ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ максимума ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… энСргиях Π΄Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ². ΠšΠ²Π°Π·ΠΈΠΊΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ позволяСт лишь качСствСнно ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ распрСдСлСния Π½Π° Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΡƒΠ³Π»Π°Ρ… 60Β° ≀ ΞΈc.m. ≀ 150Β°, Π³Π΄Π΅ сСчСния ΡƒΠΆΠ΅ вСсьма ΠΌΠ°Π»Ρ‹

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure
    • …
    corecore