153 research outputs found

    Stereoscopic principle in space observatory

    No full text
    The scientific team (ST) of the Interplanetary Solar Stereoscopic Observatory (ISSO) has got the financial support to finalize the scientific determination study with the aim to investigate the full potential of the stereoscopic idea and technical possibilities to realize the space stereoscope. The stereoscopic principle will work with optimal effectiveness in space under conditions of the stable stereoscopic base during the whole time interval of the experiment. The main conclusion of the ST up to now is that the ISSO may be created as the observatory with the flexible program, being able to support the extended solar physics investigations and the star investigations for stellar astronomy and astrophysics, being especially effective in the 3D astrometric monitoring of the motion of Solar System bodies, including near-Earth asteroids

    PEDAGOGIC SCHOOL OF THEORY OF WORKFLOW AND TESTING OF GAS TURBINE ENGINES OF SAMARA UNIVERSITY

    Get PDF
    Brief history ofpedagogic school of Theory of workflow and testing of gas turbine engines of Samara University is provided. The features and benefits of the courses of Theory of gas turbine engines, Theory and calculation of blade machines. Workflow theory of combustion chambers and Testing aircraft engines are considered

    Magnetic quantum oscillations in the charge-density-wave state of the organic metals α-(BEDT-TTF)₂MHg(SCN)₄ with M = K and Tl

    No full text
    The low-temperature charge-density-wave (CDW) state in the layered organic metals α-(BEDT-TTF)₂MHg(SCN)₄ has been studied by means of the Shubnikov–de Haas and de Haas–van Alphen effects. In addition to the dominant α-frequency, which is also observed in the normal state, both the magnetoresistance and magnetic torque possess a slowly oscillating component. These slow oscillations provide a firm evidence for the CDW-induced reconstruction of the original cylindrical Fermi surface. The α-oscillations of the interlayer magnetoresistance exhibit an anomalous phase inversion in the CDW state, whereas the de Haas–van Alphen signal maintains the normal phase. We argue that the anomaly may be attributed to the magnetic-breakdown origin of the α-oscillations in the CDW state. A theoretical model illustrating the possibility of a phase inversion in the oscillating interlayer conductivity in the presence of a spatially fluctuating magnetic breakdown gap is proposed

    Measurement of RudsR_{\text{uds}} and RR between 3.12 and 3.72 GeV at the KEDR detector

    Get PDF
    Using the KEDR detector at the VEPP-4M e+ee^+e^- collider, we have measured the values of RudsR_{\text{uds}} and RR at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3%3.3\% at most of energy points with a systematic uncertainty of about 2.1%2.1\%. At the moment it is the most accurate measurement of R(s)R(s) in this energy range

    Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector

    Full text link
    We report results of a search for narrow resonances in e+ e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained (at 90 % C.L.)

    Measurement of main parameters of the \psi(2S) resonance

    Get PDF
    A high-precision determination of the main parameters of the \psi(2S) resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-} collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the energy dependence of the multihadron cross section in the vicinity of the \psi(2S) we obtained the mass value M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h} = 2.233 +- 0.015 +- 0.037 +- 0.020 keV. The third error quoted is an estimate of the model dependence of the result due to assumptions on the interference effects in the cross section of the single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this work. Implicitly, the same assumptions were employed to obtain the charmonium leptonic width and the absolute branching fractions in many experiments. Using the result presented and the world average values of the electron and hadron branching fractions, one obtains the electron partial width and the total width of the \psi(2S): \Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV, \Gamma = 296 +- 2 +- 8 +- 3 keV. These results are consistent with and more than two times more precise than any of the previous experiments

    Tunnelling defect nanoclusters in hcp 4He crystals: alternative to supersolidity

    Full text link
    A simple model based on the concept of resonant tunnelling clusters of lattice defects is used to explain the low temperature anomalies of hcp 4He crystals (mass decoupling from a torsional oscillator, shear modulus anomaly, dissipation peaks, heat capacity peak). Mass decoupling is a result of an internal Josephson effect: mass supercurrent inside phase coherent tunnelling clusters. Quantitative results are in reasonable agreement with experiments.Comment: 13 pages, 5 figure

    Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D rheology)

    Full text link
    corecore