677 research outputs found

    Application of introduced nano-diamonds for the study of carbon condensation during detonation of high explosives

    Full text link
    This paper describes the experimental studies of the formation of nano-diamonds during detonation of TNT/RDX 50/50 mixture with small-angle x-ray scattering (SAXS) method at a synchrotron radiation beam on VEPP-3 accelerator. A new experimental method with introduction of nano-diamonds into the explosive has been applied. Inclusion of the diamonds obtained after detonation into the TNT and RDX explosives allows modelling of the case of instant creation of nano-diamonds during detonation.Comment: Latex, 4 pages, 2 figures (proc. of SR-2008

    Locating current sheets in the solar corona

    Get PDF
    Current sheets are essential for energy dissipation in the solar corona, in particular by enabling magnetic reconnection. Unfortunately, sufficiently thin current sheets cannot be resolved observationally and the theory of their formation is an unresolved issue as well. We consider two predictors of coronal current concentrations, both based on geometrical or even topological properties of a force free coronal magnetic field. First, there are separatrices related to magnetic nulls. Through separatrices the magnetic connectivity changes discontinuously. Coronal magnetic nulls are, however, very rare. At second, inspired by the concept of generalized magnetic reconnection without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the magnetic connectivity changes continuously, though strongly. The strength of the connectivity change can be quantified by measuring the squashing of the flux tubes which connect the magnetically conjugated photospheres. We verify the QSL and separatrix concepts by comparing the sites of magnetic nulls and enhanced squashing with the location of current concentrations in the corona. Due to the known difficulties of their direct observation we simulated the coronal current sheets by numerically calculating the response of the corona to energy input from the photosphere heating a simultaneously observed EUV Bright Point. We did not find coronal current sheets not at the separatrices but at several QSL locations. The reason is that although the geometrical properties of force free extrapolated magnetic fields can indeed, hint at possible current concentrations, a necessary condition for current sheet formation is the local energy input into the corona

    COMPUTER SIMULATION OF GAMMA-RAY DETECTOR BASED ON SCINTILLATION CRYSTALS AND SILICON PHOTOMULTIPLIERS

    Get PDF
    Subject of Research. The paper considers the principles of realization of the gamma-radiation detector based on a silicon photoelectron multiplier and a scintillation crystal with the use of an optical matching scheme. Method. For studying the possible variants of detector creation, computer models were developed in the ZEMAX Software environment, describing radiation propagation process of scintillation in the crystal volume in view of the main processes taking place in the scintillation detector. The model has the same optical characteristics as cesium iodide (CsI). Main Results. Quantitative parameters of the signal and radiation losses in modeled systems were obtained. The information on radiation distribution in the photodetector plane was obtained as well. The optimal sheme for detector creation from the registration effectiveness point of view was established and its geometric parameters were determined. Practical Relevance. The development of the approach gives the possibility to solve the problem of creating highly efficient and miniature scintillation detectors at the expense of a new class of photodetectors - silicon photoelectric multipliers. The results of the research will be useful in the development of scintillation gamma spectrometers and other devices with operating principles based on the methods of scintillation spectrometry and radiometr

    How much charm can PANDA produce?

    Full text link
    We consider the production of charmed baryons and mesons in the proton-antiproton binary reactions at the energies of the future Pˉ\bar{P}ANDA experiment. To describe these processes in terms of hadronic interaction models, one needs strong couplings of the initial nucleons with the intermediate and final charmed hadrons. Similar couplings enter the models of binary reactions with strange hadrons. For both charmed and strange hadrons we employ the strong couplings and their ratios calculated from QCD light-cone sum rules. In this method finite masses of cc and ss quarks are taken into account. Employing the Kaidalov's quark-gluon string model with Regge poles and adjusting the normalization of the amplitudes in this model to the calculated strong couplings, we estimate the production cross section of charmed hadrons. For ppˉΛcΛˉcp\bar{p}\to \Lambda_c\bar{\Lambda}_c it can reach several tens of nbnb at plab=15GeVp_{lab}= 15 {GeV}, whereas the cross sections of Σc\Sigma_c and DD pair production are predicted to be smaller.Comment: 22 pages, 6 figures, matches published versio

    Observation of KS0K_S^0 semileptonic decays with CMD-2 detector

    Full text link
    The decay KS0πeνK_S^0 \to \pi e \nu has been observed by the CMD-2 detector at the e^+e^- collider VEPP-2M at Novosibirsk. Of 6 million produced KL0KS0K_L^0K_S^0 pairs, 75±1375 \pm 13 events of the KS0πeνK_S^0 \to \pi e \nu decay were selected. The corresponding branching ratio is B(KS0πeν)=(7.2±1.4)×104B(K_S^0 \to \pi e \nu)=(7.2 \pm 1.4)\times10^{-4}. This result is consistent with the evaluation of B(KS0πeν)B(K_S^0 \to \pi e \nu) from the KL0K_L^0 semileptonic rate and KS0K_S^0 lifetime assuming ΔS=ΔQ\Delta S=\Delta Q .Comment: 7 pages, 6 figures, LaTex2e. Submitted to Phys.Lett.

    Measurement of omega meson parameters in pi^+pi^-pi^0 decay mode with CMD-2

    Full text link
    About 11 200 e^+e^- -> omega -> pi^+pi^-pi^0 events selected in the center of mass energy range from 760 to 810 MeV were used for the measurement of the \omega meson parameters. The following results have been obtained: sigma _{0}=(1457 \pm 23 \pm 19)nb, m_{\omega}=(782.71 \pm 0.07 \pm 0.04) MeV/c^{2}, \Gamma_{\omega}=(8.68 \pm 0.23 \pm 0.10) MeV, \Gamma_{e^+e^-}\cdot Br (\omega -> pi^+pi^-pi^0)= (0.528 \pm 0.012 \pm 0.007) \cdot 10^{-3} MeV.Comment: 8 pages, 4 figure

    The coupling constant gρσγ_{\rho\sigma\gamma} as derived from QCD sum rules

    Full text link
    We employ QCD sum rules to calculate the coupling constant gρσγ_{\rho\sigma\gamma} by studying the three point ρσγ{\rho\sigma\gamma}-correlation function. Our results is consistent with the value of this coupling constant obtained using vector meson dominance of the electromagnetic current and the experimental ρ0\rho^0-photoproduction data.Comment: 10 pages RevTex, 3 postscript figure

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Cross section of the reaction e+eπ+ππ+πe^+ e^- \to \pi^+\pi^-\pi^+\pi^- below 1 GeV at CMD-2

    Get PDF
    Using 3.07 pb1{pb}^{-1} of data collected in the energy range 0.60-0.97 GeV by CMD-2, about 150 events of the process \epm \to \pch have been selected. The energy dependence of the cross section agrees with the assumption of the a1(1260)πa_1(1260) \pi intermediate state which is dominant above 1 GeV. For the first time \fourpi events are observed at the ρ\rho meson energy. Under the assumption that all these events come from the ρ\rho meson decay, the value of the cross section at the ρ\rho meson peak corresponds to the following decay width: \Gamma(\rho^0 \to \fourpi) = (2.8 \pm 1.4 \pm 0.5) {keV} or to the branching ratio B(\rho^0 \to \fourpi) = (1.8 \pm 0.9 \pm 0.3) \cdot 10 ^{-5}.Comment: 15 pages, 5 figure
    corecore