354 research outputs found

    Evaluation of the use of inter-company platform relations

    Get PDF
    The research objective of this study is to systematize the experience of organizing digital platforms in the field of inter-company relations to assess the level of their use by Russian enterprises. The research is based on a methodological generalization of published scientific results and an empirical analysis of general trends in the development of the organization of inter-firm interaction based on digital platforms among manufacturing enterprises. The obtained results showed the presence of several types of digital platforms used for the organization of inter-company relations. The practice of Russian enterprises is dominated by simpler platform solutions aimed at increasing the transactional efficiency of inter-firm interactions, allowing their participants to achieve positive effects associated with an increase in the number of counterparties, an increase in sales, a reduction in risks and transaction costs of interaction with counterparties. It is concluded that the possibility of achieving more significant transformational effects is associated with the development of technological ecosystems of platforms, which requires the participating enterprises to significantly transform business processes based on costly investments in capital-intensive and technologically complex solutions

    Breakdown of a conservation law in incommensurate systems

    Get PDF
    We show that invariance properties of the Lagrangian of an incommensurate system, as described by the Frenkel Kontorova model, imply the existence of a generalized angular momentum which is an integral of motion if the system remains floating. The behavior of this quantity can therefore monitor the character of the system as floating (when it is conserved) or locked (when it is not). We find that, during the dynamics, the non-linear couplings of our model cause parametric phonon excitations which lead to the appearance of Umklapp terms and to a sudden deviation of the generalized momentum from a constant value, signalling a dynamical transition from a floating to a pinned state. We point out that this transition is related but does not coincide with the onset of sliding friction which can take place when the system is still floating.Comment: 7 pages, 6 figures, typed with RevTex, submitted to Phys. Rev. E Replaced 27-03-2001: changes to text, minor revision of figure

    Resolution of null fiber and conormal bundles on the Lagrangian Grassmannian

    Full text link
    We study the null fiber of a moment map related to dual pairs. We construct an equivariant resolution of singularities of the null fiber, and get conormal bundles of closed KC K_C -orbits in the Lagrangian Grassmannian as the categorical quotient. The conormal bundles thus obtained turn out to be a resolution of singularities of the closure of nilpotent KC K_C -orbits, which is a "quotient" of the resolution of the null fiber.Comment: 17 pages; completely revised and add reference

    Dilute Bose gas in two dimensions: Density expansions and the Gross-Pitaevskii equation

    Full text link
    A dilute two-dimensional (2D) Bose gas at zero temperature is studied by the method developed earlier by the authors. Low density expansions are derived for the chemical potential, ground state energy, kinetic and interaction energies. The expansion parameter is found to be a dimensionless in-medium scattering amplitude u obeying the equation 1/u+\ln u=-\ln(na^2\pi)-2\gamma, where na^2 and \gamma are the gas parameter and the Euler constant, respectively. It is shown that the ground state energy is mostly kinetic in the low density limit; this result does not depend on a specific form of the pairwise interaction potential, contrary to 3D case. A new form of 2D Gross-Pitaevskii equation is proposed within our scheme.Comment: 4 pages, REVTeX, no figure

    Period Integrals of CY and General Type Complete Intersections

    Full text link
    We develop a global Poincar\'e residue formula to study period integrals of families of complex manifolds. For any compact complex manifold XX equipped with a linear system VV^* of generically smooth CY hypersurfaces, the formula expresses period integrals in terms of a canonical global meromorphic top form on XX. Two important ingredients of our construction are the notion of a CY principal bundle, and a classification of such rank one bundles. We also generalize our construction to CY and general type complete intersections. When XX is an algebraic manifold having a sufficiently large automorphism group GG and VV^* is a linear representation of GG, we construct a holonomic D-module that governs the period integrals. The construction is based in part on the theory of tautological systems we have developed in the paper \cite{LSY1}, joint with R. Song. The approach allows us to explicitly describe a Picard-Fuchs type system for complete intersection varieties of general types, as well as CY, in any Fano variety, and in a homogeneous space in particular. In addition, the approach provides a new perspective of old examples such as CY complete intersections in a toric variety or partial flag variety.Comment: An erratum is included to correct Theorem 3.12 (Uniqueness of CY structure

    Shape of a sliding capillary contact due to the hysteresis of contact angle: theory and experiment

    Get PDF
    We consider a classical problem of a capillary neck between a parabolic body and a plane with a small amount of liquid in between. In the state of thermodynamic equilibrium, the contact area between the bodies and the liquid layer has a circular shape. However, if the bodies are forced to slowly move in the tangential direction, the shape will change due to the hysteresis of the contact angle. We discuss the form of the contact area under two limiting assumptions about the friction law in the boundary line. We also present a detailed experimental study of the shape of sliding capillary contact in dependence on the roughness of the contacting surfaces

    Influence of Chemical Heterogeneity and Third Body on Adhesive Strength: Experiment and Simulation

    Get PDF
    We investigate experimentally and numerically the influence of chemical heterogeneity and of third-body particles on adhesive contact. Chemical heterogeneity is generated by chemical treatment of the contacting bodies changing locally the surface energy. For studying the influence of the third body, two types of particles are used: sand particles with various geometrical shapes and sizes, and steel spheres of equal radius. Dependencies of the normal force on the indentation depth at both indenting and pull-off as well as the evolution of the contact configuration are investigated. Corresponding numerical simulations are carried out using the boundary element method (BEM)

    Virtually abelian K\"ahler and projective groups

    Full text link
    We characterise the virtually abelian groups which are fundamental groups of compact K\"ahler manifolds and of smooth projective varieties. We show that a virtually abelian group is K\"ahler if and only if it is projective. In particular, this allows to describe the K\"ahler condition for such groups in terms of integral symplectic representations

    Measurement of xF3xF_3 and F2F_2 Structure Functions in Low Q2Q^2 Region with the IHEP-JINR Neutrino Detector

    Full text link
    The isoscalar structure functions xF3xF_3 and F2F_2 are measured as functions of xx averaged over all Q2Q^2 permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of xF3xF_3 structure function provides ΛMSˉ(4)=(411±200)\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200) MeV under the assumption of QCD validity in the region of low Q2Q^2. The corresponding value of the strong interaction constant αS(MZ)=0.1230.013+0.010\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013} agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.Comment: 11 pages, 1 Postscript figure, LaTeX. Talk given at the 7th International Workshop on Deep Inelastic Scattering and QCD (DIS 99), Zeuthen, Germany, 19-23 Apr 199

    Two-particle pairing and phase separation in a two-dimensional Bose-gas with one or two sorts of bosons

    Full text link
    We present a phase diagram for a dilute two-dimensional Bose-gas on a lattice. For one sort of boson we consider a realistic case of the van der Waals interaction between particles with a strong hard-core repulsion UU and a van der Waals attractive tail VV. For V<2tV< 2 t , tt being a hopping amplitude, the phase diagram of the system contains regions of the usual one-particle Bose-Einstein condensation (BEC). However for V>2tV>2t we have total phase separation on a Mott-Hubbard Bose solid and a dilute Bose gas. For two sorts of structureless bosons described by the two band Hubbard model an s-wave pairing of the two bosons of different sort 0 \neq 0 is possible. The results we obtained should be important for different Bose systems, including submonolayers of 4^4He, excitons in semiconductors, Schwinger bosons in magnetic systems and holons in HTSC. In the HTSC case a possibility of two-holon pairing in the slave-bosons theories of superconductivity can restore a required charge 2e2e of a Cooper pair.Comment: 10 pages, 2 figure
    corecore