3 research outputs found

    Cosmic ray electrons and positrons from discrete stochastic sources

    Full text link
    The distances that galactic cosmic ray electrons and positrons can travel are severely limited by energy losses to at most a few kiloparsec, thereby rendering the local spectrum very sensitive to the exact distribution of sources in our galactic neighbourhood. However, due to our ignorance of the exact source distribution, we can only predict the spectrum stochastically. We argue that even in the case of a large number of sources the central limit theorem is not applicable, but that the standard deviation for the flux from a random source is divergent due to a long power law tail of the probability density. Instead, we compute the expectation value and characterise the scatter around it by quantiles of the probability density using a generalised central limit theorem in a fully analytical way. The uncertainty band is asymmetric about the expectation value and can become quite large for TeV energies. In particular, the predicted local spectrum is marginally consistent with the measurements by Fermi-LAT and HESS even without imposing spectral breaks or cut-offs at source. We conclude that this uncertainty has to be properly accounted for when predicting electron fluxes above a few hundred GeV from astrophysical sources.Comment: 16 pages, 8 figures; references and clarifying comment added; to appear in JCA

    Complementarity of Galactic radio and collider data in constraining WIMP dark matter models

    Full text link
    In this work we confront dark matter models to constraints that may be derived from radio synchrotron radiation from the Galaxy, taking into account the astrophysical uncertainties and we compare these to bounds set by accelerator and complementary indirect dark matter searches. Specifically we apply our analysis to three popular particle physics models. First, a generic effective operator approach, in which case we set bounds on the corresponding mass scale, and then, two specific UV completions, the Z' and Higgs portals. We show that for many candidates, the radio synchrotron limits are competitive with the other searches, and could even give the strongest constraints (as of today) with some reasonable assumptions regarding the astrophysical uncertainties.Comment: 22 pages, 12 figure

    Interpretation of AMS-02 Results: Correlations among Dark Matter Signals

    No full text
    The AMS-02 collaboration has recently released data on the positron fraction e+/(e−+e+)e^+/(e^-+e^+) up to energies of about 350 GeV. If one insists on interpreting the observed excess as a dark matter signal, then we find it is best described by a TeV-scale dark matter annihilating into τ+τ−\tau^+\tau^-, although this situation is already severely constrained by gamma-ray measurements. The annihilation into μ+μ−\mu^+\mu^- is allowed by gamma-rays more than τ+τ−\tau^+\tau^-, but it gives a poorer fit to \textsc{AMS-02} data. Moreover, since electroweak corrections induce correlations among the fluxes of stable particles from dark matter annihilations, the recent AMS-02 data imply a well-defined prediction for the correlated flux of antiprotons. Under the assumption that their future measurements will not show any antiproton excess above the background, the dark matter interpretation of the positron rise will possibly be ruled out by only making use of data from a single experiment. This work is the first of a program where we emphasize the role of correlations among dark matter signals.Comment: 12 pages, 4 figures. Published versio
    corecore