12 research outputs found

    Hydrodynamic flow of expanding Bose-Einstein condensates

    Full text link
    We study expansion of quasi-one-dimensional Bose-Einstein condensate (BEC) after switching off the confining harmonic potential. Exact solution of dynamical equations is obtained in framework of the hydrodynamic approximation and it is compared with the direct numerical simulation of the full problem showing excellent agreement at realistic values of physical parameters. We analyze the maximum of the current density and estimate the velocity of expansion. The results of the 1D analysis provides also qualitative understanding of some properties of BEC expansion observed in experiments.Comment: 5 pages, 3 figures, RevTeX4. To appear in Physical Review

    Superfluid Flow Past an Array of Scatterers

    Full text link
    We consider a model of nonlinear superfluid flow past a periodic array of point-like scatterers in one dimension. An application of this model is the determination of the critical current of a Josephson array in a regime appropriate to a Ginzburg-Landau formulation. Here, the array consists of short normal-metal regions, in the presence of a Hartree electron-electron interaction, and embedded within a one-dimensional superconducting wire near its critical temperature, TcTc. We predict the critical current to depend linearly as A(TcT)A (Tc-T), while the coefficient AA depends sensitively on the sizes of the superconducting and normal-metal regions and the strength and sign of the Hartree interaction. In the case of an attractive interaction, we find a further feature: the critical current vanishes linearly at some temperature TT* less than TcTc, as well as at TcTc itself. We rule out a simple explanation for the zero value of the critical current, at this temperature TT*, in terms of order parameter fluctuations at low frequencies.Comment: 23 pages, REVTEX, six eps-figures included; submitted to PR
    corecore