221 research outputs found

    Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps

    Full text link
    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied {\it perpendicular} to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IVIV curve with voltage noise, Lyapunov exponents and Poincar\'e sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model.Comment: 12 pages, 11 figure

    Orientational pinning and transverse voltage: Simulations and experiments in square Josephson junction arrays

    Full text link
    We study the dependence of the transport properties of square Josephson Junctions arrays with the direction of the applied dc current, both experimentally and numerically. We present computational simulations of current-voltage curves at finite temperatures for a single vortex in the array (Ha2/Φ0=f=1/L2Ha^2/\Phi_0=f=1/L^2), and experimental measurements in 100×1000100\times1000 arrays under a low magnetic field corresponding to f0.02f\approx0.02. We find that the transverse voltage vanishes only in the directions of maximum symmetry of the square lattice: the [10] and [01] direction (parallel bias) and the [11] direction (diagonal bias). For orientations different than the symmetry directions, we find a finite transverse voltage which depends strongly on the angle ϕ\phi of the current. We find that vortex motion is pinned in the [10] direction (ϕ=0\phi=0), meaning that the voltage response is insensitive to small changes in the orientation of the current near ϕ=0\phi=0. We call this phenomenon orientational pinning. This leads to a finite transverse critical current for a bias at ϕ=0\phi=0 and to a transverse voltage for a bias at ϕ0\phi\not=0. On the other hand, for diagonal bias in the [11] direction the behavior is highly unstable against small variations of ϕ\phi, leading to a rapid change from zero transverse voltage to a large transverse voltage within a few degrees. This last behavior is in good agreement with our measurements in arrays with a quasi-diagonal current drive.Comment: 9 pages, 9 figure

    Vortex Pinball Under Crossed AC Drives in Superconductors with Periodic Pinning Arrays

    Full text link
    Vortices driven with both a transverse and a longitudinal AC drive which are out of phase are shown to exhibit a novel commensuration-incommensuration effect when interacting with periodic substrates. For different AC driving parameters, the motion of the vortices forms commensurate orbits with the periodicity of the pinning array. When the commensurate orbits are present, there is a finite DC critical depinning threshold, while for the incommensurate phases the vortices are delocalized and the DC depinning threshold is absent.Comment: 4 pages, 4 postscript figure

    Transverse depinning in strongly driven vortex lattices with disorder

    Full text link
    Using numerical simulations we investigate the transverse depinning of moving vortex lattices interacting with random disorder. We observe a finite transverse depinning barrier for vortex lattices that are driven with high longitudinal drives, when the vortex lattice is defect free and moving in correlated 1D channels. The transverse barrier is reduced as the longitudinal drive is decreased and defects appear in the vortex lattice, and the barrier disappears in the plastic flow regime. At the transverse depinning transition, the vortex lattice moves in a staircase pattern with a clear transverse narrow-band voltage noise signature.Comment: 4 pages, 4 figure

    Chiral phase transitions: focus driven critical behavior in systems with planar and vector ordering

    Full text link
    The fixed point that governs the critical behavior of magnets described by the NN-vector chiral model under the physical values of NN (N=2,3N =2, 3) is shown to be a stable focus both in two and three dimensions. Robust evidence in favor of this conclusion is obtained within the five-loop and six-loop renormalization-group analysis in fixed dimension. The spiral-like approach of the chiral fixed point results in unusual crossover and near-critical regimes that may imitate varying critical exponents seen in physical and computer experiments.Comment: 4 pages, 5 figures. Discussion enlarge

    Guided vortex motion in superconductors with a square antidot lattice

    Full text link
    We have measured the in-plane anisotropy of the vortex mobility in a thin Pb film with a square array of antidots. The Lorentz force, acting on the vortices, was rotated by adding two perpendicular currents and keeping the amplitude of the net current constant. One set of voltage probes was used to detect the vortex motion. We show that the pinning landscape provided by the square antidot lattice influences the vortex motion in two different ways. First, the modulus of the vortex velocity becomes angular dependent with a lower mobility along the diagonals of the pinning array. Second, the vortex displacement is preferentially parallel to the principal axes of the underlying pinning lattice, giving rise to a misalignment between the vortex velocity and the applied Lorentz force. We show that this anisotropic vortex motion is temperature dependent and progressively fades out when approaching the normal state.Comment: 5 pages, 4 figure

    Commensurate and Incommensurate Vortex Lattice Melting in Periodic Pinning Arrays

    Full text link
    We examine the melting of commensurate and incommensurate vortex lattices interacting with square pinning arrays through the use of numerical simulations. For weak pinning strength in the commensurate case we observe an order-order transition from a commensurate square vortex lattice to a triangular floating solid phase as a function of temperature. This floating solid phase melts into a liquid at still higher temperature. For strong pinning there is only a single transition from the square pinned lattice to the liquid state. For strong pinning in the incommensurate case, we observe a multi-stage melting in which the interstitial vortices become mobile first, followed by the melting of the entire lattice, consistent with recent imaging experiments. The initial motion of vortices in the incommensurate phase occurs by an exchange process of interstitial vortices with vortices located at the pinning sites. We have also examined the vortex melting behavior for higher matching fields and find that a coexistence of a commensurate pinned vortex lattice with an interstitial vortex liquid occurs while at higher temperatures the entire vortex lattice melts. For triangular arrays at incommensurate fields higher than the first matching field we observe that the initial vortex motion can occur through a novel correlated ring excitation where a number of vortices can rotate around a pinned vortex. We also discuss the relevance of our results to recent experiments of colloidal particles interacting with periodic trap arrays.Comment: 8 figure

    Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning

    Full text link
    We study vortex states and dynamics in 2D superconductors with periodic pinning at fractional sub-matching fields using numerical simulations. For square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4 filling fractions while only partially ordered states form at other filling fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments. For triangular pinning arrays we observe matching effects at filling fractions of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular pinning arrays we also find that, for certian sub-matching fillings, vortex configurations depend on pinning strength. For weak pinning, ordering in which a portion of the vortices are positioned between pinning sites can occur. Depinning of the vortices at the matching fields, where the vortices are ordered, is elastic while at the incommensurate fields the motion is plastic. At the incommensurate fields, as the applied driving force is increased, there can be a transition to elastic flow where the vortices move along the pinning sites in 1D channels and a reordering transition to a triangular or distorted triangular lattice. We also discuss the current-voltage curves and how they relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure

    New data on OZI rule violation in bar{p}p annihilation at rest

    Full text link
    The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+ pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen target are presented. It was found that the value of this ratio increases with the decreasing of the dipion mass, which demonstrates the difference in the phi and omega production mechanisms. An indication on the momentum transfer dependence of the apparent OZI rule violation for phi production from the 3S1 initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter

    Protonium annihilation into π0π0 at rest in a liquid hydrogen target

    Get PDF
    The annihilation frequency of the reaction p¯ p!p0p0 at rest in liquid hydrogen has been measured by the Obelix experiment by using different apparatus configurations and trigger conditions. The value obtained is f (p0p0, LH)5(2.860.1stat60.4syst)31024. With the same data samples, the p0h annihilation frequency has been determined to be f (p0h, LH)5(0.960.2stat60.1syst)31024. The results are discussed within the frame of the present experimental situation
    corecore