78 research outputs found
Spectral measures of small index principal graphs
The principal graph of a subfactor with finite Jones index is one of the
important algebraic invariants of the subfactor. If is the adjacency
matrix of we consider the equation . When has square
norm the spectral measure of can be averaged by using the map
, and we get a probability measure on the unit circle
which does not depend on . We find explicit formulae for this measure
for the principal graphs of subfactors with index , the
(extended) Coxeter-Dynkin graphs of type , and . The moment
generating function of is closely related to Jones' -series.Comment: 23 page
A planar calculus for infinite index subfactors
We develop an analog of Jones' planar calculus for II_1-factor bimodules with
arbitrary left and right von Neumann dimension. We generalize to bimodules
Burns' results on rotations and extremality for infinite index subfactors.
These results are obtained without Jones' basic construction and the resulting
Jones projections.Comment: 56 pages, many figure
Unsigned state models for the Jones polynomial
It is well a known and fundamental result that the Jones polynomial can be
expressed as Potts and vertex partition functions of signed plane graphs. Here
we consider constructions of the Jones polynomial as state models of unsigned
graphs and show that the Jones polynomial of any link can be expressed as a
vertex model of an unsigned embedded graph.
In the process of deriving this result, we show that for every diagram of a
link in the 3-sphere there exists a diagram of an alternating link in a
thickened surface (and an alternating virtual link) with the same Kauffman
bracket. We also recover two recent results in the literature relating the
Jones and Bollobas-Riordan polynomials and show they arise from two different
interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric
On the Representation Theory of an Algebra of Braids and Ties
We consider the algebra introduced by F. Aicardi and J.
Juyumaya as an abstraction of the Yokonuma-Hecke algebra. We construct a tensor
space representation for and show that this is faithful. We use
it to give a basis for and to classify its irreducible
representations.Comment: 24 pages. Final version. To appear in Journal of Algebraic
Combinatorics
Subfactors of index less than 5, part 1: the principal graph odometer
In this series of papers we show that there are exactly ten subfactors, other
than subfactors, of index between 4 and 5. Previously this
classification was known up to index . In the first paper we give
an analogue of Haagerup's initial classification of subfactors of index less
than , showing that any subfactor of index less than 5 must appear
in one of a large list of families. These families will be considered
separately in the three subsequent papers in this series.Comment: 36 pages (updated to reflect that the classification is now complete
Classical integrable lattice models through quantum group related formalism
We translate effectively our earlier quantum constructions to the classical
language and using Yang-Baxterisation of the Faddeev-Reshetikhin-Takhtajan
algebra are able to construct Lax operators and associated -matrices of
classical integrable models. Thus new as well as known lattice systems of
different classes are generated including new types of collective integrable
models and canonical models with nonstandard matrices.Comment: 7 pages; Talk presented at NEEDS'93 (Gallipoli,Italy
Combinatorial expression for universal Vassiliev link invariant
The most general R-matrix type state sum model for link invariants is
constructed. It contains in itself all R-matrix invariants and is a generating
function for "universal" Vassiliev link invariants. This expression is more
simple than Kontsevich's expression for the same quantity, because it is
defined combinatorially and does not contain any integrals, except for an
expression for "the universal Drinfeld's associator".Comment: 20 page
On the idempotents of Hecke algebras
We give a new construction of primitive idempotents of the Hecke algebras
associated with the symmetric groups. The idempotents are found as evaluated
products of certain rational functions thus providing a new version of the
fusion procedure for the Hecke algebras. We show that the normalization factors
which occur in the procedure are related to the Ocneanu--Markov trace of the
idempotents.Comment: 11 page
Weak Riemannian manifolds from finite index subfactors
Let be a finite Jones' index inclusion of II factors, and
denote by their unitary groups. In this paper we study the
homogeneous space , which is a (infinite dimensional) differentiable
manifold, diffeomorphic to the orbit
of the Jones projection of the inclusion. We endow with a
Riemannian metric, by means of the trace on each tangent space. These are
pre-Hilbert spaces (the tangent spaces are not complete), therefore is a weak Riemannian manifold. We show that enjoys certain
properties similar to classic Hilbert-Riemann manifolds. Among them, metric
completeness of the geodesic distance, uniqueness of geodesics of the
Levi-Civita connection as minimal curves, and partial results on the existence
of minimal geodesics. For instance, around each point of ,
there is a ball (of uniform radius ) of
the usual norm of , such that any point in the ball is joined to
by a unique geodesic, which is shorter than any other piecewise smooth curve
lying inside this ball. We also give an intrinsic (algebraic) characterization
of the directions of degeneracy of the submanifold inclusion , where the last set denotes the Grassmann manifold
of the von Neumann algebra generated by and .Comment: 19 page
Spiders for rank 2 Lie algebras
A spider is an axiomatization of the representation theory of a group,
quantum group, Lie algebra, or other group or group-like object. We define
certain combinatorial spiders by generators and relations that are isomorphic
to the representation theories of the three rank two simple Lie algebras,
namely A2, B2, and G2. They generalize the widely-used Temperley-Lieb spider
for A1. Among other things, they yield bases for invariant spaces which are
probably related to Lusztig's canonical bases, and they are useful for
computing quantities such as generalized 6j-symbols and quantum link
invariants.Comment: 33 pages. Has color figure
- …