7 research outputs found

    Gaseous Radiochemical Method for Registration of Ionizing Radiation and Its Possible Applications in Science and Industry

    Full text link
    This work presents a new possibility of registration of ionizing radiation by the flowing gaseous radiochemical method (FGRM). The specified method uses the property of some solid crystalline lattice materials for a free emission of radioactive isotopes of inert gas atoms formed as a result of nuclear reactions. Generated in an ampoule of the detector, the radioactive inert gases are transported by a gas-carrier into the proportional gas counter of the flowing type, where the decay rate of the radioactive gas species is measured. This quantity is unequivocally related to the flux of particles (neutrons, protons, light and heavy ions) at the location of the ampoule. The method was used to monitor the neutron flux of the pulsed neutron target "RADEX" driven by the linear proton accelerator of INR RAS. Further progress of the FGRM may give rise to possible applications in nuclear physics, astrophysics and medicine, in the nondestructive control of fissionable materials, diagnostics of thermonuclear plasma, monitoring of fluxes and measurement of spectra of bombarding particles.Comment: 19 pages, 5 figure

    Development of a detector based on a CVD-diamond for the use in radiotherapy facilities

    No full text
    High radiation hardness, chemical resistance, high temperature operation capabilities stimulate a growing interest to use diamond materials as detectors of ionizing radiation. Samples of CVD-diamond materials in sizes 4×3 mm and 4×1 mm with thickness from 50 microns up to 500 microns have been grown in INR RAS using a DC glow discharge in a mixture of gases CH4/H2 on molybdenum substrates.Высокая радиационная стойкость, стойкость к химическим воздействиям, температурная стабильность вызывают повышенный интерес к использованию алмазных материалов в качестве детекторов ионизирующих излучений. Образцы CVD-алмазных материалов размерами 4×3 и 4×1 мм толщиной от 50 до 500 мкм выращены в ИЯИ РАН методом газофазного осаждения в тлеющем разряде в смеси газов СН4/Н2 на подложках из молибдена.Висока радіаційна стійкість, стійкість до хімічних впливів, температурна стабільність викликають підвищений інтерес до використання алмазних матеріалів як детектори іонізуючих випромінювань. Зразки CVD-алмазних матеріалів розмірами 4×3 та 4×1 мм товщиною від 50 до 500 мкм вирощені в ІЯІ РАН методом газофазного осадження в жевріючому розряді в суміші газів СН4/Н2 на підкладках з молібдену

    Fast Neutron Detection with 6Li-loaded Liquid Scintillator

    Full text link
    We report on the development of a fast neutron detector using a liquid scintillator doped with enriched Li-6. The lithium was introduced in the form of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid scintillator. A Li-6 concentration of 0.15 % by weight was obtained. A 125 mL glass cell was filled with the scintillator and irradiated with fission-source neutrons. Fast neutrons may produce recoil protons in the scintillator, and those neutrons that thermalize within the detector volume can be captured on the Li-6. The energy of the neutron may be determined by the light output from recoiling protons, and the capture of the delayed thermal neutron reduces background events. In this paper, we discuss the development of this 6Li-loaded liquid scintillator, demonstrate the operation of it in a detector, and compare its efficiency and capture lifetime with Monte Carlo simulations. Data from a boron-loaded plastic scintillator were acquired for comparison. We also present a pulse-shape discrimination method for differentiating between electronic and nuclear recoil events based on the Matusita distance between a normalized observed waveform and nuclear and electronic recoil template waveforms. The details of the measurements are discussed along with specifics of the data analysis and its comparison with the Monte Carlo simulation

    State-of-the-art progress of gaseous radiochemical method for detecting of ionizing radiation

    No full text
    The article provides a review of the research results obtained during of more than 20 years concerning using the gaseous radiochemical method (GRCM) for detecting of ionizing radiation. This method based on threshold nuclear reactions with production of radioactive noble gas which does not interact with the materials of gaseous tract. The applications of GRCM in the diagnostics of neutrinos, neutrons, charged particles, thermonuclear plasma thermometry, and the study of the structure and dynamics of astrophysical objects, position-sensitive dosimetry of neutron targets with accelerator driving, spatial distribution of the fast neutron flux density in a nuclear reactor allowing the transformation of longitudinal coordinate of neutron flux distribution into a temporal distribution of the radiochemical gas decay counting rate (“barcode” semblance) and measurement of bombarding particles spectra are described. Experimental testing of the described technologies was made on the neutron target driven with the linear proton accelerator of Institute for Nuclear Research of Russian Academy of Sciences (INR RAS)

    Mass Spectrometry in Russia

    No full text
    corecore