887 research outputs found

    Emptiness Formation Probability and Quantum Knizhnik-Zamolodchikov Equation

    Get PDF
    We consider the one-dimensional XXX spin 1/2 Heisenberg antiferromagnet at zero temperature and zero magnetic field. We are interested in a probability of formation of a ferromagnetic string in the antiferromagnetic ground-state. We call it emptiness formation probability [EFP]. We suggest a new technique for computation of EFP in the inhomogeneous case. It is based on quantum Knizhnik-Zamolodchikov equation. We evalauted EFP for strings of the length six in the inhomogeneous case. The homogeneous limit confirms our hypothesis about the relation of quantum correlations to number theory. We also make a conjecture about a general structure of EFP for arbitrary lenght of the string \.Comment: LATEX file, 23 pages, 21 reference

    On the calculation of finite-gap solutions of the KdV equation

    Full text link
    A simple and general approach for calculating the elliptic finite-gap solutions of the Korteweg-de Vries (KdV) equation is proposed. Our approach is based on the use of the finite-gap equations and the general representation of these solutions in the form of rational functions of the elliptic Weierstrass function. The calculation of initial elliptic finite-gap solutions is reduced to the solution of the finite-band equations with respect to the parameters of the representation. The time evolution of these solutions is described via the dynamic equations of their poles, integrated with the help of the finite-gap equations. The proposed approach is applied by calculating the elliptic 1-, 2- and 3-gap solutions of the KdV equations

    The Yangian symmetry of the Hubbard Model

    Full text link
    We discovered new hidden symmetry of the one-dimensional Hubbard model. We showthat the one-dimensional Hubbard model on the infinite chain has the infinite-dimensional algebra of symmetries. This algebra is a direct sum of two sl(2) sl(2) -Yangians. This Y(sl(2))⊕Y(sl(2)) Y(sl(2)) \oplus Y(sl(2)) symmetry is an extension of the well-known sl(2)⊕sl(2) sl(2) \oplus sl(2) . The deformation parameters of the Yangians are equal up to the signs to the coupling constant of the Hubbard model hamiltonian.Comment: 7 pages, ITP-SB-93-6

    Determinant Representations of Correlation Functions for the Supersymmetric t-J Model

    Full text link
    Working in the FF-basis provided by the factorizing FF-matrix, the scalar products of Bethe states for the supersymmetric t-J model are represented by determinants. By means of these results, we obtain determinant representations of correlation functions for the model.Comment: Latex File, 41 pages, no figure; V2: minor typos corrected, V3: This version will appear in Commun. Math. Phy
    • …
    corecore