15 research outputs found

    Neurotrophin-3 involvement in the regulation of hair follicle morphogenesis

    Get PDF
    Hair follicle epithelium and nervous system share a common ectodermal origin, and some neurotrophins can modulate keratinocyte proliferation and apoptosis. It is therefore reasonable to ask whether growth factors that control neural development are also involved in the regulation of hair follicle morphogenesis. Focusing on neurotrophin-3 (NT-3) and its high-affinity-receptor [tyrosine kinase C (TrkC)], we show that hair placode keratinocytes express TrkC mRNA and immunoreactivity early during murine hair follicle morphogenesis. In later stages of hair follicle development, TrkC mRNA, TrkC-, and NT-3-immunoreactivity are seen in keratinocytes of the proximal hair bulb as well as in dermal papilla fibroblasts. Compared with the corresponding wild-type animals, early stages of hair follicle morphogenesis are significantly accelerated in newborn NT-3 overexpressing mice, whereas these are retarded in newborn heterozygous NT-3 knockout (+/–) mice. These observations suggest that NT-3 is an important growth modulator during morphogenesis and remodeling of neuroectodermal–mesenchymal interaction systems like the hair follicle

    BDNF overexpression induces differential increases among subsets of sympathetic innervation in murine back skin

    No full text
    Besides their recognized dependence on nerve growth factor (NGF) during development, the dependence of mature sympathetic ganglion neurons on other neurotrophins is still unclear. Here, we have investigated the sympathetic innervation of back skin in mice overexpressing brain-derived neurotrophic factor (BDNF) under the alpha-myosin heavy-chain promoter, as well as in BDNF knockout (-/-) mice. Compared with wild-type controls, the dorsal skin of BDNF overexpressing mice displayed a significantly enhanced number of adrenergic, tyrosine hydroxylase-immunoreactive (IR) nerve fibres, while cholinergic or peptidergic sensory nerve fibres appeared unaltered. The adrenergic hyperinnervation in dorsal skin of BDNF overexpressing mice was most pronounced in the arrector pili muscle of hair follicles, while no increase of tyrosine hydroxylase-or neuropeptide Y-IR fibres associated with subcutaneous blood vessels was found. Instead, back skin of BDNF knockout (-/-) mice contained significantly fewer tyrosine hydroxylase-IR dermal nerve fibres than wild-type animals. This suggests that BDNF plays an important role in the control of different subsets of adrenergic innervation in murine back skin, and indicates that paravertebral sympathetic ganglia display a previously unrecognized differential BDNF-dependence in vivo

    Sonic hedgehog signaling is essential for hair development

    Get PDF
    Background: The skin is responsible for forming a variety of epidermal structures that differ amongst vertebrates. In each case the specific structure (for example scale, feather or hair) arises from an epidermal placode as a result of epithelial–mesenchymal interactions with the underlying dermal mesenchyme. Expression of members of the Wnt, Hedgehog and bone morphogenetic protein families (Wnt10b, Sonic hedgehog (Shh) and Bmp2/Bmp4, respectively) in the epidermis correlates with the initiation of hair follicle formation. Further, their expression continues into either the epidermally derived hair matrix which forms the hair itself, or the dermal papilla which is responsible for induction of the hair matrix. To address the role of Shh in the hair follicle, we have examined Shh null mutant mice. Results: We found that follicle development in the Shh mutant embryo arrested after the initial epidermal–dermal interactions that lead to the formation of a dermal papilla anlage and ingrowth of the epidermis. Wnt10b, Bmp2 and Bmp4 continued to be expressed at this time, however. When grafted to nude mice (which lack T cells), Shh mutant skin gave rise to large abnormal follicles containing a small dermal papilla. Although these follicles showed high rates of proliferation and some differentiation of hair matrix cells into hair-shaft-like material, no hair was formed. Conclusions: Shh signaling is not required for initiating hair follicle development. Shh signaling is essential, however, for controlling ingrowth and morphogenesis of the hair follicle

    Inhibitory autocrine factors produced by the mesenchyme-derived hair follicle dermal papilla may be a key to male pattern baldness.

    No full text
    NoBACKGROUND: Androgenetic alopecia, or male pattern baldness, is a common, progressive disorder where large, terminal scalp hairs are gradually replaced by smaller hairs in precise patterns until only tiny vellus hairs remain. This balding can cause a marked reduction in the quality of life. Although these changes are driven by androgens, most molecular mechanisms are unknown, limiting available treatments. The mesenchyme-derived dermal papilla at the base of the mainly epithelial hair follicle controls the type of hair produced and is probably the site through which androgens act on follicle cells by altering the regulatory paracrine factors produced by dermal papilla cells. During changes in hair size the relationship between the hair and dermal papilla size remains constant, with alterations in both dermal papilla volume and cell number. This suggests that alterations within the dermal papilla itself play a key role in altering hair size in response to androgens. Cultured dermal papilla cells offer a useful model system to investigate this as they promote new hair growth in vivo, retain characteristics in vitro which reflect their parent follicle's response to androgens in vivo and secrete mitogenic factors for dermal papilla cells and keratinocytes. OBJECTIVES: To investigate whether cultured dermal papilla cells from balding follicles secrete altered amounts/types of mitogenic factors for dermal papilla cells than those from larger, normal follicles. We also aimed to determine whether rodent cells would recognize mitogenic signals from human cells in vitro and whether factors produced by balding dermal papilla cells could alter the start of a new mouse hair cycle in vivo. METHODS: Dermal papilla cells were cultured from normal, balding and almost clinically normal areas of balding scalps and their ability to produce mitogenic factors compared using both human and rat whisker dermal papilla cells as in vitro targets and mouse hair growth in vivo. RESULTS: Normal scalp cells produced soluble factors which stimulated the growth of both human scalp and rat whisker dermal papilla cells in vitro, demonstrating dose-responsive mitogenic capability across species. Although balding cells stimulated some growth, this was much reduced and they also secreted inhibitory factor(s). Balding cell media also delayed new hair growth when injected into mice. CONCLUSIONS: Human balding dermal papilla cells secrete inhibitory factors which affect the growth of both human and rodent dermal papilla cells and factors which delay the onset of anagen in mice in vivo. These inhibitory factor(s) probably cause the formation of smaller dermal papillae and smaller hairs in male pattern baldness. Identification of such factor(s) could lead to novel therapeutic approaches
    corecore