28 research outputs found

    Electron Spin-Lattice Relaxation of Er3+ ions in Er0.01Y0.99Ba2Cu3Ox

    Full text link
    The temperature dependence of the electron spin-lattice relaxation SLR was studied in Er0.01Y0.99Ba2Cu3Ox compounds. The data derived from the electron spin resonance ESR and SLR measurements were compared to those from inelastic neutron scattering studies. SLR of Er3+ ions in the temperature range from 20 K to 65 K can be explained by the resonant phonon relaxation process with the involvement of the lowest excited crystalline-electric-field electronic states of Er3+. These results are consistent with a local phase separation effects. Possible mechanisms of the ESR line broadening at lower temperatures are discussed. Keywords: YBCO; EPR; ESR; Electron spin-lattice relaxation time, T ; Crystalline-electric-fieldComment: 6 pages, 4 figure

    Magnetic resonance in iron oxide nanoparticles: quantum features and effect of size

    Full text link
    In order to better understand the transition from quantum to classical behavior in spin system, electron magnetic resonance (EMR) is studied in suspensions of superparamagnetic magnetite nanoparticles with an average diameter of ~ 9 nm and analyzed in comparison with the results obtained in the maghemite particles of smaller size (~ 5 nm). It is shown that both types of particles demonstrate common EMR behavior, including special features such as the temperature-dependent narrow spectral component and multiple-quantum transitions. These features are common for small quantum systems and not expected in classical case. The relative intensity of these signals rapidly decreases with cooling or increase of particle size, marking gradual transition to the classical FMR behavior
    corecore