3,646 research outputs found

    Radio Observations of the Hubble Deep Field South Region III: The 2.5, 5.2 and 8.7 GHz Catalogues and Radio Source Properties

    Get PDF
    Deep radio observations of a wide region centred on the Hubble Deep Field South have been performed, providing one of the most sensitive set of radio observations acquired on the Australia Telescope Compact Array to date. A central rms of ~10 microJy is reached at four frequencies (1.4, 2.5, 5.2 and 8.7 GHz). In this paper the full source catalogues from the 2.5, 5.2 and 8.7 GHz observations are presented to complement Paper II, along with a detailed analysis of image quality and noise. We produce a consolidated catalogue by matching sources across all four frequencies of our survey. Radio spectral indices are used to investigate the nature of the radio sources and identify a number of sources with flat or inverted radio spectra, which indicates AGN activity. We also find several other interesting sources, including a broadline emitting radio galaxy, a giant radio galaxy and three Gigahertz Peaked Spectrum sources.Comment: Accepted by AJ. 13 figures and 13 table

    The VLA Survey of the Chandra Deep Field South. IV. Source Population

    Full text link
    We present a detailed analysis of 256 radio sources from our deep (flux density limit of 42 microJy at the field centre at 1.4 GHz) Chandra Deep Field South 1.4 and 5 GHz VLA survey. The radio population is studied by using a wealth of multi-wavelength information in the radio, optical, and X-ray bands. The availability of redshifts for ~ 80% of the sources in our complete sample allows us to derive reliable luminosity estimates for the majority of the objects. X-ray data, including upper limits, for all our sources turn out to be a key factor in establishing the nature of faint radio sources. Due to the faint optical levels probed by this study, we have uncovered a population of distant Active Galactic Nuclei (AGN) systematically missing from many previous studies of sub-millijansky radio source identifications. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-millijansky sky, contrary to some previous results. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. The ratio of radio to optical luminosity depends more on radio luminosity, rather than being due to optical absorption.Comment: 13 pages, 8 figures, accepted for publication in the Astrophysical Journa

    3D characterization of CdSe nanoparticles attached to carbon nanotubes

    Full text link
    The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the carbon surface. Electron tomography reveals that the nanoparticles are hexagonal-based with the (001) planes epitaxially matched to the outer graphene layer.Comment: 7 pages, 8 figure

    Silver and Palladium Complexes of a Bis(benzimidazolin-2-ylidene)pyridine Pincer Ligand

    Get PDF
    Reaction of 2,6-bis(3-butylbenzimidazol-1-ium)pyridine dibromide with silVer oxide affords a dinuclear complex of the type [L2Ag2]2+ [L ) 2,6-bis(3-butylbenzimidazolin-2-ylidene)pyridine]. 1H NMR spectroscopic studies suggest that the dinuclear structure is also present in solution. Transmetalationof the silVer-NHC complex with PdCl2(CH3CN)2 yields a mononuclear palladium complex of the type [LPdCl]+, with a chelating C,N,C pincer ligand

    The dust un-biased cosmic star formation history from the 20 cm VLA-COSMOS survey

    Get PDF
    We derive the cosmic star formation history (CSFH) out to z=1.3 using a sample of ~350 radio-selected star-forming galaxies, a far larger sample than in previous, similar studies. We attempt to differentiate between radio emission from AGN and star-forming galaxies, and determine an evolving 1.4 GHz luminosity function based on these VLA-COSMOS star forming galaxies. We precisely measure the high-luminosity end of the star forming galaxy luminosity function (SFR>100 M_Sol/yr; equivalent to ULIRGs) out to z=1.3, finding a somewhat slower evolution than previously derived from mid-infrared data. We find that more stars are forming in luminous starbursts at high redshift. We use extrapolations based on the local radio galaxy luminosity function; assuming pure luminosity evolution, we derive L(1+z)2.1±0.2L_* \propto (1+z)^{2.1 \pm 0.2} or L(1+z)2.5±0.1L_* \propto (1+z)^{2.5 \pm 0.1}, depending on the choice of the local radio galaxy luminosity function. Thus, our radio-derived results independently confirm the ~1 order of magnitude decline in the CSFH since z~1.Comment: 9 pages, 7 figures; submitted to ApJ (revised following the referee report

    Antimicrobial resistance with Streptococcus pneumoniae in the United States, 1997 98.

    Get PDF
    From November 1997 to April 1998, 1,601 clinical isolates of Streptococcus pneumoniae were obtained from 34 U.S. medical centers. The overall rate of strains showing resistance to penicillin was 29. 5%, with 17.4% having intermediate resistance. Multidrug resistance, defined as lack of susceptibility to penicillin and at least two other non-ss-lactam classes of antimicrobial drugs, was observed in 16.0% of isolates. Resistance to all 10 ss-lactam drugs examined in this study was directly related to the level of penicillin resistance. Penicillin resistance rates were highest in isolates from middle ear fluid and sinus aspirates of children ambulatory-care settings. Twenty-four of the 34 medical centers in this study had participated in a similar study 3 years before. In 19 of these 24 centers, penicillin resistance rates increased 2.9% to 39.2%. Similar increases were observed with rates of resistance to other antimicrobial drugs

    Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    Full text link
    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in Phys. Rev.
    corecore