186 research outputs found
Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy
This study presents a physically-based model for the simulation of impedance spectra in solid oxide fuel cell (SOFC) composite anodes. The model takes into account the charge transport and the charge-transfer reaction at the three-phase boundary distributed along the anode thickness, as well as the phenomena at the electrode/electrolyte interface and the multicomponent gas diffusion in the test rig. The model is calibrated with experimental impedance spectra of cermet anodes made of nickel and scandia-stabilized zirconia and satisfactorily validated in electrodes with different microstructural properties, quantified through focused ion beam SEM tomography. Besides providing the material-specific kinetic parameters of the electrochemical hydrogen oxidation, this study shows that the correlation between electrode microstructure and electrochemical performance can be successfully addressed by combining physically-based modelling, impedance spectroscopy and 3D tomography. This approach overcomes the limits of phenomenological equivalent circuits and is suitable for the interpretation of experimental data and for the optimisation of the electrode microstructure
New method for the deposition of nickel oxide in porous scaffolds for electrodes in solid oxide fuel cells and electrolyzers
A simple chemical bath deposition is used to coat a complex porous ceramic scaffold with a conformal nickel layer. The resulting composite is used as a Solid Oxide Fuel Cell electrode and its electrochemical response is measured in humidified hydrogen. X-Ray tomography is used to determine microstructural parameters of the uncoated and Ni-coated porous structure, among other, the surface area to total volume, the radial pore size and size of the necks between pores
Operando visualisation and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries
Alternative battery technologies are required to meet growing energy demands and address the limitations of present technologies. As such, it is necessary to look beyond lithium-ion batteries. Zinc batteries enable high power density while being sourced from ubiquitous and cost-effective materials. This paper presents, for the first time known to the authors, multi-length scale tomography studies of failure mechanisms in zinc batteries with and without commercial microporous separators. In both cases, dendrites were grown, dissolved, and regrown, critically resulting in different morphology of dendritic layer formed on both the electrode and the separator. The growth of dendrites and their volume-specific areas were quantified using tomography and radiography data in unprecedented resolution. High-resolution ex situ analysis was employed to characterize single dendrites and dendritic deposits inside the separator. The findings provide unique insights into mechanisms of metal-battery failure effected by growing dendrites
Mechanistic Studies of Liquid Metal Anode SOFCs: I. Oxidation of Hydrogen in Chemical - Electrochemical Mode
Liquid metal anode (LMA) solid oxide fuel cells (SOFCs) are a promising type of high temperature fuel cell suitable for the direct oxidation of gaseous or solid fuel. Depending upon the operating conditions they can be run in four different modes. In this first of a series of studies concerning the mechanism of reaction and species transport in LMA SOFCs, the oxidation of hydrogen fuel in a liquid tin anode has been investigated. An electrochemical model is developed based upon fast dissolution of hydrogen in a molten tin anode, slow, rate-determining homogeneous reaction of hydrogen with oxygen dissolved in the liquid tin, followed by anodic oxygen injection under diffusion control to replace the oxygen removed by reaction (so-called Chemical - Electrochemical mode or CE mode). Experimentally-generated data are used to validate the model. The model has introduced a new key parameter, zÂŻ, which takes a value between zero and unity; its value is determined by geometric and convective factors in the cell as well as the partial pressure of the supplied hydrogen fuel. Current output of the cell is proportional to the value of zÂŻ
Guidelines for the rational design and engineering of 3D manufactured solid oxide fuel cell composite electrodes
The growth of 3D printing has opened the scope for designing microstructures for solid oxide fuel cell s (SOFCs) with improved power density and lifeti me. This technique can introduce structural modifications at a scale larger than particle size but smaller than cell size, such as by inserting electrolyte pillars of ~5 - 100 ” m. This study sets the minimum requirements for the rational design of 3D printed electrodes based on an electrochemical model and analytical solutions for functional layers with negligible electronic resistance and no mixed conduction . Results show that this structural modification enhances the power density when the ratio k eff betwee n effective conductivity and bulk conductivity of the ionic phase is smaller than 0.5. The maximum performance improvement is predicted as a function of k eff . A design study on a wide range of pillar shapes indicates that improvements are achieved by any s tructural modification which provides ionic conduction up to a characteristic thickness ~10 - 40 ” m without removing active volume at the electrolyte interface. The best performance is reached for thin ( ~80 ” m) pillars when the composite electrode is optimised for ma ximum three - phase boundary density, pointing towards the design of scaffolds with well - defined geometry and fractal structures
Electrochemical simulation of Solid Oxide Fuel Cell electrodes: an integrated approach to address the microstructure-performance correlation
Understanding the complex interplay between electrode microstructure and electrochemical performance is one of the key aspects for the optimization of Solid Oxide Fuel Cells (SOFC). Physically-based modelling, at different levels of sophistication, can provide a valuable insight in order to help the interpretation of experimental data and provide design indications to improve electrode stability and performance. In this contribution we summarize the different modelling approaches used in our group, ranging from physically-based equivalent circuits, continuum conservation models and 3D models solved within the reconstructed electrode microstructure. When necessary, these models are coupled with percolation theory, packing algorithms and tomographic techniques. Special focus is given to the application of the models to interpret impedance spectra and their thorough validation under different conditions. Examples include the application of the models to electrodes with different microstructures, the study of the degradation mechanisms of Ni-infiltrated anodes as well as impedance simulations in real microstructures (Figure 1). Results reveal that coupling physically-based modelling, impedance spectroscopy and 3D tomography is a promising approach to gain a fundamental understanding of the phenomena occurring at different length scales in SOFC electrodes, allowing for interpreting and planning experiments as well as to design more stable and more efficient electrodes
A unit cell model of a regenerative hydrogen-vanadium fuel cell
In this study, a time dependent model for a regenerative hydrogen-vanadium fuel cell is introduced. This lumped isothermal model is based on mass conservation and electrochemical kinetics, and it simulates the cell working potential considering the major ohmic resistances, a complete ButlerâVolmer kinetics for the cathode overpotential and a TafelâVolmer kinetics near mass-transport free conditions for the anode overpotential. Comparison of model simulations against experimental data was performed by using a 25âcm2 lab scale prototype operated in galvanostatic mode at different current density values (50â600Amâ2). A complete Nernst equation derived from thermodynamic principles was fitted to open circuit potential data, enabling a global activity coefficient to be estimated. The model prediction of the cell potential of one single charge-discharge cycle at a current density of 400Amâ2 was used to calibrate the model and a model validation was carried out against six additional data sets, which showed a reasonably good agreement between the model simulation of the cell potential and the experimental data with a Root Mean Square Error (RMSE) in the range of 0.3â6.1% and 1.3â8.8% for charge and discharge, respectively. The results for the evolution of species concentrations in the cathode and anode are presented for one data set. The proposed model permits study of the key factors that limit the performance of the system and is capable of converging to a meaningful solution relatively fast (sâmin)
- âŠ