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a b s t r a c t

This study presents a physically-based model for the simulation of impedance spectra in

solid oxide fuel cell (SOFC) composite anodes. The model takes into account the charge

transport and the charge-transfer reaction at the three-phase boundary distributed along

the anode thickness, as well as the phenomena at the electrode/electrolyte interface and

the multicomponent gas diffusion in the test rig. The model is calibrated with experi-

mental impedance spectra of cermet anodes made of nickel and scandia-stabilized zirco-

nia and satisfactorily validated in electrodes with different microstructural properties,

quantified through focused ion beam SEM tomography. Besides providing the material-

specific kinetic parameters of the electrochemical hydrogen oxidation, this study shows

that the correlation between electrode microstructure and electrochemical performance

can be successfully addressed by combining physically-based modelling, impedance

spectroscopy and 3D tomography. This approach overcomes the limits of phenomeno-

logical equivalent circuits and is suitable for the interpretation of experimental data and

for the optimisation of the electrode microstructure.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Solid oxide fuel cells (SOFCs) are electrochemical systems

which convert the chemical energy of a fuel, such as

hydrogen, directly into electric energy and heat, allowing for

high efficiency of power generation [1,2], low emission of

pollutants [3] and fuel flexibility [4]. The performance and

durability of the cell are strongly dependent on the electrodes

[5e7], which are porous layers, typically made of a composite
444.
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of ceramics and/or metallic particles, wherein electro-

chemical reactions occur. There is significant interest in

relating the electrode microstructure to electrochemical per-

formance [8e12]. Understanding how the microstructure af-

fects the electrochemical response would allow researchers to

better design the electrodes to increase power density and

extend lifetime [13e17].

This task can be accomplished by using physically-based

models. Physically-based electrochemical models solve
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Fig. 1 e a) Schematic representation of the charge-transfer

and charge transport phenomena occurring within the
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conservation equations for charged and chemical species to

provide a mechanistic description of the transport and reaction

processes occurring within the electrodes [18e21]. The micro-

structural characteristics of the electrodes are included in the

modelwithdifferent levelsofcomplexity. Insomerecentstudies,

model equations are solved within the three-dimensional

microstructure of the electrode [22e24], which is reconstructed

with tomographic techniques [25e28]. However, the computa-

tionalcostof thistypeofsimulationsiscurrently toohightoallow

for a systematic use of this method. Typically, the continuum

approach is adopted in developing electrochemical models

[19,29e31]. In this approach the particle-level details are repre-

sented through effective microstructural properties, which can

be obtained from the application of empirical correlations [32],

percolation models [33e35], packing algorithms [36,37] or 3D to-

mography [38]. Severalmodelling studieshavebeenpresented to

predict themicrostructural contribution to electrochemical per-

formance and enhance the power density via an optimisation of

themicrostructural properties [19,37,39e43].

However, in most of the studies published so far the vali-

dation of the model is lacking [32,44,45]. In order to quantify

the correlation between microstructure and electrochemical

performance, models must be properly calibrated with high-

quality electrochemical experimental data and then verified

in different electrode microstructures. Typically electro-

chemical models are calibrated by tuning microstructural or

electrochemical parameters on a single set of polarization

curves [30,46,47] without assessing their validity in different

samples. Furthermore, electrochemical impedance spectros-

copy (EIS) data contain more information than polarization

curves and allow for the decoupling of different processes

according to their characteristic timescale, thus representing

a more comprehensive benchmark for the validation of elec-

trochemical models [48e53].

This study describes the validation of a physically-based

electrochemical model by using impedance spectroscopy

data for different operating conditions and different electrode

microstructures. The study focuses on SOFC composite an-

odes made of the same materials, nickel and scandia-

stabilized zirconia (ScSZ), prepared with different volume

fractions and fabrication techniques, including infiltrated

electrodes. Focused ion beam SEM (FIB-SEM) tomography is

used to obtain themicrostructural parameters required by the

model, while EIS data at different operating conditions are

used for its calibration and validation. The results of the study

comprise the material-specific kinetic parameters of Ni:ScSZ

electrodes, which can be used along with the model to opti-

mise the microstructural design.

The paper is organized as follows: in Section 2 the electro-

chemical model is presented. Section 3 reports the results of

the study, comprising the fitting and deconvolution of imped-

ancespectra, thediscussionofmodelparametersand thecross

verification of the model in different microstructures. The

general conclusions of the study are reported in Section 4.
anode (not to scale). On the top, the three contributions to

electrode impedance are reported. b) Tomographic

reconstruction of the anode Ni40 (green: Ni, grey: ScSZ).

(For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this

article.)
Modelling

Fig. 1a schematically represents the main phenomena occur-

ring within the anodes modelled and tested in this study. The
anode consists of a porous composite layer of Ni and ScSZ

particles randomly dispersed and sintered on the top of an

yttria-stabilized zirconia (YSZ) electrolyte [54]. Hydrogen is

supplied to the anode and diffuses throughout the diffusive

stagnant layer, which is expected to be present in electrodes

tested in button cell configuration [55e57]. Hydrogen is elec-

trochemically oxidized at the three-phase boundaries (TPBs)

among Ni, ScSZ and pores spread throughout the thickness of

the anode. Water counter-diffuses back while electrons

migrate along the percolating electron-conducting networks

created by Ni particles. Oxygen ions, coming from the elec-

trolyte, are transferred to the ScSZ phase at the anode/elec-

trolyte interface and then reach the TPBs to take part in

hydrogen electro-oxidation.

The electrochemical model, developed in the next section,

mathematically describes these transport and reaction phe-

nomena. The following set of simplifying assumptions are

considered in order to keep the model as simple as possible

and reduce the number of unknown parameters:

http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
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� no mixed ionic-electronic conduction, i.e., Ni is regarded as a

pureelectronicconductorwhileScSZasapureionicconductor;

� charge-transfer reactions are described according to

Butler-Volmer kinetic expressions [34,58];

� the gas transport within the pores of the anode is neglected

due to the small thickness of the electrode. This assump-

tion is further verified in Section 3.2 (see Fig. 5);

� isothermal conditions;

� only the transport and reaction phenomena occurring

along the thickness of the electrode aremodelled, resulting

in a 1D distributed model. For the button cell configuration

used here, this 1D approximation has been shown to be

sufficient to extract accurate results [51,59,60];

� the electrode microstructure is modelled as a continuum:

the effective microstructural properties, such as the TPB

length per unit volume and the effective conductivities,

which are evaluated from the tomographic reconstruction

of the electrodes (see Fig. 1b), are assumed homogeneous

throughout the electrode thickness.

Although the model is applied to Ni:ScSZ anodes, it is

generally applicable to any type of composite SOFC electrodes

that satisfy the assumptions listed above.
Model equations

According to the description provided in the previous section,

the impedance of the electrode consists of three processes

occurring in series (see Fig. 1a):

� oxygen ion transfer at the electrode/electrolyte interface;

� distributed charge-transfer at the TPB spread throughout

the electrode thickness, coupled with electron and oxygen

ion migration;

� gas diffusion in the stagnant layer.

In this section the impedance of the electrode is derived

according to physically-based sub-models describing these

processes. For the sake of conciseness, model equations are

reported in the frequency domain only. The symbol Dz is used

to represent the phasor of the a.c. perturbation of a generic

variable z‘ around its steady-state value z, which is the open-

circuit condition in this case:

z0 � z ¼ dz$ejðutþ4Þ ¼ Dz$ejut with dz< < z (1)

where j is the imaginary unit and u the angular frequency,

with u ¼ 2p f, where f is the frequency. For a comprehensive

description of the Fourier transformation of model equations

from time domain to frequency domain the reader is referred

to Lasia [61] and Bertei et al. [52].

The impedance of the oxygen ion transfer ZOt between YSZ

and ScSZ at the electrode/electrolyte interface is represented

through an oxygen transfer resistance rScSZ/YSZ in parallel to a

capacitance cScSZ/YSZ, as follows:

ZOt ¼ 1
AScSZ=YSZ

�
1

rScSZ=YSZ
þ jucScSZ=YSZ

��1

(2)

whereAScSZ/YSZ is the fraction of interfacial area between ScSZ

and YSZ at the electrode/electrolyte interface. rScSZ/YSZ is the
specific charge-transfer resistance associated to the Faradaic

contribution of the oxygen ion transfer at ScSZ/YSZ interface,

while cScSZ/YSZ is a lumped parameter taking into account the

double-layer capacitance and the other capacitive contribu-

tions associated to the oxygen ion transfer (oxygen ion

transfer at the electrode/electrolyte interface is taken into

account in several well-established physically-based models

[62e64] and has been identified in the analysis of impedance

spectra [52,65]).

The impedance related to the distributed charge-transfer

at the TPB within the electrode is obtained from the conser-

vation equations of electronic and ionic current along the

thickness of the anode:

8>>>>>>>><
>>>>>>>>:

dDie
dx

¼ �DivTPB � DivNi=ScSZ

dDiO
dx

¼ DivTPB þ DivNi=ScSZ

x ¼ 0 : Die ¼ DI;DiO ¼ 0

x ¼ Lan : Die ¼ 0;DiO ¼ DI

(3)

where x ¼ 0 refers to the electrode/current collector interface

and x¼ Lan to the electrode/electrolyte interface (i.e., from right

to left inFig.1a).Note that thecurrentperturbationDI is totally in

electronic form at x¼ 0while it is in ionic form at x¼ Lan [34,42].

The electronic and ionic current densities, Die and DiO
respectively, are calculated according to Ohm's law [18e20]:

Die ¼ �s
eff
Ni

dDVNi

dx
with s

eff
Ni ¼ sNik

eff
Ni (4a)

DiO ¼ �s
eff
ScSZ

dDVScSZ

dx
with s

eff
ScSZ ¼ sScSZk

eff
ScSZ (4b)

where s
eff
Ni and s

eff
ScSZ are the effective electronic and ionic con-

ductivities of Ni and ScSZ, calculated by multiplying the bulk

conductivity, sNi and sScSZ, by the normalized conductivity

factor, keff
Ni and keff

ScSZ [20,37]. In Eq. (4), DVNi and DVScSZ represent

the phasors of the electronic and ionic potential in Ni and

ScSZ, respectively.

The source terms per unit volume in the right-hand side of

Eq. (3) refer to the Faradaic current due to the charge-transfer

reaction at the TPB DivTPB and the current associated to the

electric double-layer between Ni and ScSZ DivNi=ScSZ. According

to the Butler-Volmer kinetics [58] and assuming ideal capaci-

tive behaviour of the Ni/ScSZ interface [18], DivTPB and DivNi=ScSZ

result as follows:

DivTPB ¼ i0TPBL
v
TPB

F
RT

ðDVNi � DVScSZÞ (5a)

DivNi=ScSZ ¼ jucNi=ScSZA
v
Ni=ScSZðDVNi � DVScSZÞ (5b)

where i0TPB is the exchange current density per unit of TPB

length, cNi/ScSZ the specific capacitance of the Ni/ScSZ interface

while LvTPB and Av
Ni=ScSZ are microstructural properties corre-

sponding to the TPB length and the Ni/ScSZ contact area per

unit volume, respectively. F, R and T represent the Faraday

constant, the gas constant and the absolute temperature,

respectively.

By defining the activation overpotential Dh as [34]:

Dh ¼ DVNi � DVScSZ (6)

http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
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and introducing the dimensionless coordinate ~x ¼ x=Lan, the

substitution of Eqs. (4)e(6) into Eq. (3) provides the following

system:

8>>>>>>>>><
>>>>>>>>>:

d2Dh

d~x2 ¼ G2Dh

dDh
d~x

����
~x¼0

¼ �Lan

s
eff
Ni

DI

dDh
d~x

����
~x¼1

¼ Lan

s
eff
ScSZ

DI

(7)

where the dimensionless parameter G, which depends on

frequency, is defined as:

G2 ¼
�
i0TPBL

v
TPB

F
RT

þ jucNi=ScSZA
v
Ni=ScSZ

� 
1

s
eff
Ni

þ 1

s
eff
ScSZ

!
L2an (8)

Eqs. (3)e(6) represent the extension to frequency domain of

the steady-state model of porous composite SOFC electrodes

proposed by Costamagna et al. [34], who provide the solution

of Eq. (7) in order to compute the total overpotential of the

electrode Dhtot as follows:

Dhtot ¼ DVNij~x¼0
� DVScSZj~x¼1

¼ coshðGÞ þU$½2þ G sinhðGÞ � 2 coshðGÞ�
G sinhðGÞ Lan

 
1

s
eff
Ni

þ 1

s
eff
ScSZ

!
DI (9)

with:

U ¼ s
eff
Ni s

eff
ScSZ�

s
eff
Ni þ s

eff
ScSZ

�2 (10)

Finally, the impedance of the electrode Zed due to the

distributed charge-transfer reaction coupled with electron

and ion migration is equal to:

Zed ¼ Dhtot

DI

¼ Lan

 
1

s
eff
Ni

þ 1

s
eff
ScSZ

!
coshðGÞ þU$½2þ G sinhðGÞ � 2 coshðGÞ�

G sinhðGÞ
(11)

It is noteworthy that Eq. (11) was also derived, with

different notation, by Paasch et al. [66] and by Lasia [61], and is

present in ZView (element DX-1) [67] to represent the

impedance of an electrode with finite thickness and finite

resistivity of the conducting phases. A modified version of Eq.

(11) was also applied by Sonn et al. [68] and Ramos et al. [60] in

Ni:YSZ and Ni:ScSZ cermet anodes, respectively. When the

conductivity of a phase is much larger than that of the other

one, U approaches 0 and Eq. (11) equals the impedance of a

finite-length Gerischer element [61,69].

The multicomponent diffusion in the stagnant layer is

described according to the MaxwelleStefan approach [70]. In

the following, a ternary mixture of H2, H2O and inert gas (e.g.,

N2) is considered, where the species are labelled as 1, 2 and 3,

respectively. The derivation that follows represents the

extension to the frequency domain around OCV of the steady-

state diffusion model proposed by Aravind et al. [57].
Under the assumption of uniform pressure P, the conser-

vation equations for H2 and H2O within the stagnant layer

read as follows:

8>>>>>><
>>>>>>:

ju
P
RT

Dyi ¼ �dDNi

dx

Dyi

��
x¼0

¼ Dyi;0

Dyi

��
x¼Lst

¼ 0

for i ¼ 1;2 (12)

where, in this case, x ¼ 0 represents the interface between

electrode and stagnant layer while x ¼ Lst represents the

thickness of the stagnant layer (i.e., from left to right in

Fig. 1a). Dyi,0 is the phasor of molar fraction, which is the a.c.

perturbation generated by the dynamics of the electro-

chemical processes occurring within the electrode, which are

assumed to be faster than the diffusion in the stagnant layer.

The boundary condition at x ¼ Lst sets a constant molar frac-

tion of H2 and H2O in the supply of gases outside the stagnant

layer where the perturbations vanish, thus resulting in Dyi¼ 0.

The phasor of the molar flux DNi is computed according to

the MaxwelleStefan approach [70]:

� P
RT

dyi

dx
¼
X3
ksi

ykNi � yiNk

Dik
(13)

where Dik is the binary diffusivity between species i and k,

calculated according to the Fuller et al. equation [71].

Considering that, at steady-state, the reaction stoichiometry

setsN2 ¼ eN1 andN3 ¼ 0, the flux expression can be recast in a

Fick-type form as [57]:

DNi ¼ � P
RT

Di
dDyi

dx
with Di ¼

�
y1

D12
þ y2

D12
þ y3

Di3

��1

for i ¼ 1;2

(14)

where the a.c. perturbation Dyi in Di has been neglected. In

particular, Di represents the average diffusivity of species i

within the stagnant layer in open-circuit conditions.

By substituting Eq. (14) into Eq. (12), two independent

second-order ordinary differential equations are obtained,

whose solution is:

DyiðxÞ ¼ Dyi;0

sinh
�
ðLst � xÞ ffiffiffiffiffiffiffiffiffiffiffiffi

ju=Di

p �
sinh

�
Lst

ffiffiffiffiffiffiffiffiffiffiffiffi
ju=Di

p � (15)

By substituting Eq. (15) into Eq. (14), the phasor of the flux is

obtained:

DNijx¼0 ¼
P
RT

Di

ffiffiffiffiffiffiffiffiffiffiffiffi
ju=Di

p
tanh

�
Lst

ffiffiffiffiffiffiffiffiffiffiffiffi
ju=Di

p �Dyi;0 (16)

which is related to the a.c. current density DI experienced by

the electrode according to the hydrogen oxidation reaction

stoichiometry:

DI ¼ �2FDN1jx¼0 ¼ 2FDN2jx¼0 (17)

Eqs. (16) and (17) link the phasors of the molar fractions

Dyi,0 to the a.c. current density DI.

Following the Taylor expansion of the Nernst equation of

hydrogen oxidation reaction, the a.c. perturbation of the

http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
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concentration overpotential at the interface between elec-

trode and stagnant layer results as [72]:

Dhconc ¼
RT
2F

�
Dy2;0

y2
� Dy1;0

y1

�
(18)

By substituting Eqs. (16) and (17) into Eq. (18), the imped-

ance contribution due to the diffusion within the stagnant

layer Zst results as follows:

Zst ¼ Dhconc

DI

¼
�
RT
2F

�21
P

0
@ 1
D1y1

tanh
�
Lst

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ju=D1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ju=D1

p

þ 1

D2y2

tanh
�
Lst

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ju=D2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ju=D2

p
1
A (19)

It is worth noting that Eq. (19) represents the sum of two

finite-length Warburg elements [69], which is consistent with

themathematical description of H2 andH2O diffusionwithin a

finite stagnant layer.

Finally, the total impedance of the system Z is calculated by

summing up all the contributions:

Z ¼ juLcables þ Rey þ 2,ðZOt þ Zed þ ZstÞ (20)

where the factor 2 takes into account that there are two an-

odes in the symmetric setup considered in this study, Rey is the

ohmic resistance of the YSZ electrolyte and Lcables takes into

account the inductance of the cables connecting the cell to the

EIS analyser.

The total impedance is schematically represented by the

equivalent circuit reported in Fig. 2. It is worth reminding that

the equivalent circuit represents the analytical solution of the

physically-based model derived in this section, thus it is not a

phenomenological circuit build a posteriori for the empirical

interpretation of EIS data as commonly done in the literature.
Results and discussion

Samples, tests and measured parameters

The model described in Section 2 is used to interpret the

impedance spectra of symmetric anodes prepared and tested

by Somalu et al. [54,73]. The samples refer to cermet anodes

made of Ni and ScSZ (more specifically, 10Sc1CeSZ), sintered

at 1350 �C, with different solid volume fractions of Ni. Only the

samples Ni30 and Ni40, corresponding to 30 and 40% vol. of Ni
Zed Zst

x2

Lcables Rey
RScSZ/YSZ

CScSZ/YSZ

Fig. 2 e Schematic representation of the physically-based

circuit model according to Eq. (20). In the figure, the

following abbreviations are used: RScSZ/YSZ ¼ rScSZ/YSZ/AScSZ/

YSZ and CScSZ/YSZ ¼ cScSZ/YSZ·AScSZ/YSZ.
respectively, are considered: Ni30 is used as a benchmark for

model calibration (Section 3.2) because it shows the largest

impedance, thus allowing for a more accurate deconvolution,

while Ni40 is used for verification purposes (Section 3.4). An

additional sample, referred as 10x, is considered in Section 3.4.

The sample 10x consists of a scaffold of ScSZ infiltrated 10

times with Ni(NO3)2 solution, following a fabrication proced-

ure similar to that reported by Lomberg et al. [74]. Thus, in all

the samples analysed in this study thematerials are the same,

only the electrode microstructure differs.

The impedance of the anodes was recorded over the fre-

quency range 10�2e105 Hz in an in-house built apparatus [73]

using a symmetric setup at open-circuit over the temperature

range 600e800 �C under 97% H2e3% H2O and 48.5% H2e48.5%

N2e3% H2O, referred in the following as 100% H2 and 50% H2.

The microstructural parameters required by the model are

obtained from the analysis of the FIB-SEM reconstruction of

the anodes after the tests (see Fig. 1b), as described by Tariq

et al. [75,76]. Table 1 summarizes the microstructural pa-

rameters evaluated for Ni30 and used in Section 3.2. The

effective conductivity of Ni in the samples was determined

according to the van der Pauw technique with a 4-point probe

[54,77]. The bulk ionic conductivity of ScSZ is taken from the

literature [78] and approximated with the correlation:

sScSZ ¼ 6:5$104 exp

�
� 9250

T

�
S m�1 within 600� 800 �C (21)

Calibration and deconvolution

Themodel is calibrated by comparingmodel simulations with

experimental EIS data of Ni30 at different temperatures and

hydrogen partial pressures. The calibration allows for the

fitting of the unknownmaterial-specific parameters related to

the charge-transfer reactions at the electrode/electrolyte

interface, rScSZ/YSZ and cScSZ/YSZ, and at the distributed TPB, i0TPB
and cNi/ScSZ. The thickness of the stagnant layer Lst and the

water molar fraction yH2O are regarded as open fitting pa-

rameters of the diffusion model Zst. Note that, although the

water molar fraction is a known operating parameter, its

value is allowed to vary in the simulations to take into account

the complex three-dimensional convection and diffusion

phenomena in the test rig which cannot be captured by a 1D

diffusion model (Eq. (19)), as further discussed in Section 3.3.

Except for Lst, which is assumed constant in all the exper-

imental conditions, the other parameters are expected to

depend on temperature while being independent of hydrogen

partial pressure. In addition, the material-specific parameters

rScSZ/YSZ, cScSZ/YSZ, i0TPB and cNi/ScSZ, are assumed to remain
Table 1 e Microstructural parameters of sample Ni30.

Parameter Value Source

AScSZ/YSZ [e] 0.5009 FIB-SEM

LvTPB [m m�3] 2.465$1012 FIB-SEM

Av
Ni=ScSZ [m2 m�3] 1.57$106 FIB-SEM

keffScSZ [e] 0.2569 FIB-SEM

s
eff
Ni [S m�1] 6597.2 þ 4.4533$107/T Measured

Lan [mm] 30 SEM

http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
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constant in different electrode microstructures. A complex

non-linear least square fitting is used to minimize the sum of

squared residuals [79].

The calibration of the model for different operating tem-

peratures is reported in Fig. 3. In the whole range of temper-

atures investigated, the spectra show two features in the

Nyquist plot: a low-frequency contribution, which is almost

unaffected by temperature, and a depressed feature at me-

dium/high frequency, which shrinks as temperature in-

creases. The model accurately reproduces the shape and

frequency-dependence of experimental data, showing minor

inaccuracies for frequencies <0.1 Hz.

Fig. 4 shows the comparison between model simulations

and experimental data for different hydrogen partial pres-

sures for the anode Ni30 at OCV and 700 �C. The Figure shows

that increasing the hydrogen partial pressure affects only the

low-frequency contribution, whose resistance is almost

halved, while the feature at medium/high frequency remains

unvaried. Also in this case, the model provides a satisfactory

fitting of the experimental data, especially in the medium/

high frequency range.

Besides reproducing the experimental data, the model al-

lows for the physically-based deconvolution of the impedance

spectra into three elementary contributions, as reported in

Fig. 5a. The low-frequency (LF) contribution is due to the

diffusion of gases in the stagnant layer, reproduced with Zst

according to Eq. (19). This interpretation is supported by the

weak temperature-dependence of this feature (Fig. 3), the
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Fig. 3 e Calibration of the physically-based model at

different temperatures. The data refer to the cermet anode

Ni30 at OCV and 50% H2. a) Nyquist plot; b) imaginary

component of impedance versus frequency.
decrease in resistance as the hydrogen partial pressure in-

creases (Fig. 4), and a characteristic frequency in the order of

1e5 Hz (see Fig. 3b) compatible with gas transport processes

taking place in the test rig [55e57,72]. The large resistance

associated to the LF is due to the arrangement of the test

setup, as discussed in Section 3.3, and can be reduced with a

proper design of the test rig.

The depressed feature at medium/high frequency is

decoupled into two contributions: a medium-frequency

feature (MF) and a smaller high-frequency feature (HF). The

MF feature is associated to the electrochemical processes

occurring along the anode thickness, described according to

Zed. The frequency range is compatible with the distributed

charge-transfer reaction as reported in the literature for

similar electrodes [52,60,80]. This contribution is the one

mostly affected by the microstructural properties of the

electrode, since its impedance strongly depends on parame-

ters such as LvTPB, A
v
Ni=ScSZ and s

eff
ScSZ according to Eq. (11). As

anticipated in Section 2, gas diffusion across the anode

thickness is not considered in Zed. This simplifying assump-

tion is verified in the inset of Fig. 5a: the impedance of the MF

feature is not affected when porous gas diffusion is included

in the model according to the approach presented by Bertei

et al. [81], thus porous gas diffusion can be neglected as done

in Eq. (11). This is also corroborated by the findings of Ramos

et al. [60], who report a negligible porous gas diffusion

contribution in electrolyte-supported Ni:ScSZ functional

layers.

Finally, the HF contribution is ascribed to the impedance

ZOt of the oxygen transfer at the electrode/electrolyte interface

(Eq. (2)), which is expected to be present in the high frequency

range according to the literature [52,62,63,65]. The presence of

three contributions in the experimental spectra is corrobo-

rated by the distribution of relaxation times (DRT), reported in

Fig. 5b. The DRT method allows for the deconvolution of the

spectra without any a priori assumptions, providing the

resistance and characteristic frequency of each process. More

details on the DRTmethod can be found elsewhere [82e84]. In

this study the DRT is used as a semi-quantitative tool to

corroborate the findings of the physically-based model. In

particular, both the characteristic frequency and the resis-

tance of each process identified with the DRT are compatible

http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
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with the independent deconvolution provided by the

physically-based model in Fig. 5a. This is a good indication

about the validity of the model proposed in this study, which

is further discussed in the next section.
Discussion of fitted parameters

The calibration reported in Section 3.2 showed that the model

satisfactorily reproduces the experimental impedance spectra

in a wide range of operating conditions. However, before

accepting the calibration as successful, the fitted parameters

must be analysed and comparedwith the literature in order to

assess their soundness.

The parameters fitted in Section 3.2 are summarized in

Table 2 and reported in Fig. 6 as a function of temperature.

Fig. 6 shows that all the material-specific parameters exhibit

clear linear trends in the Arrhenius plot, which allow for the

calculation of their activation energies, reported in Table 2.
The activation energy of i0TPB, equal to 115 kJ mol�1, is

similar to what reported in the literature for Ni:ScSZ anode

functional layers, i.e., 120 kJ mol�1 [85] and 111e122 kJ mol�1

[60]. In addition, this value compares reasonably well with the

activation energy of the hydrogen charge-transfer in a very

similar system, such as Ni:YSZ. For Ni:YSZ electrodes, de Boer

[86] and Bieberle et al. [87] report an activation energy of 152

and 85 kJ mol�1, respectively: in this study, the fitted

Eact ¼ 115 kJ mol�1 lies between these two extreme values. At

700 �C the i0TPB fitted in this study for Ni:ScSZ is equal to

46.0$10�6 A m�1, while in Ni:YSZ anodes the i0TPB is 27.5$10�6

or 3.8$10�6 A m�1 according to Bieberle et al. [87] or de Boer

[86], respectively, for 97% H2e3% H2O. The ratio between the

exchange current densities in Ni:ScSZ and Ni:YSZ lies be-

tween 1.67 (considering Bieberle et al. [87]) and 12.1 (consid-

ering de Boer [86]): this is in qualitative agreement with Shi

et al. [85], who report an i0TPB in Ni:ScSZ about 5 times larger

than in Ni:YSZ.

The resistance of the oxygen transfer rScSZ/YSZ decreases

sharply as the temperature increases (see Fig. 6). On the other

hand, both the capacitances cNi/ScSZ and cScSZ/YSZ show a weak

dependence on temperature as expected [18] and lie within

the typical range 0.1e30 F m�2 reported in the literature

[59,80,85,88]. Note that the fitted material-specific parameters

do not vary with the hydrogen partial pressure within the

range investigated, which is in fair agreement with the weak

pH2-dependence of the hydrogen electrochemical oxidation

kinetics reported in the literature [86e89]. The effect of water

partial pressure on the hydrogen electro-oxidation kinetic

parameters, which can be more significant than pH2 according

to Ramos et al. [60], will be subject of future analysis.

The thickness of the stagnant layer Lst remains constant

with temperature and hydrogen partial pressure and is in the

order of centimetres (see Table 2). This high value is attributed

to the arrangement of the test rig and it is consistent with

Aravind et al. [57], who used a similar experimental setup.

However, the transport of gases in the test rig, ruled by a

complex three-dimensional flow field, possibly influenced by

pressure-driven flows [56,57], is expected to be more complex

than the 1D diffusion considered in this study (see Eq. (19)).

This supports the inaccuracies in the fitting of the LF feature in

Section 3.2. Furthermore, this explains why the water molar

fraction yH2O had to be left as an open fitting parameter during

the calibration, as anticipated in Section 3.2. In particular,

Table 2 shows that, in order to capture the LF resistance, yH2O
must be reduced by about an order of magnitude if compared

with the water molar fraction estimated from the operating

conditions, equal to ca. 3%. Similar inaccuracies in the simu-

lation of diffusion in the stagnant layer are acknowledged by

Ramos et al. [60] too.

Hence, the model of gas diffusion in the stagnant layer Zst

cannot be considered satisfactorily validated due to the

complex geometry of the test rig. Nevertheless, it can be used

to fit the LF feature and decouple its contribution from the

total impedance in order to focus on the medium/high fre-

quency range. On the other hand, themodels of the HF andMF

processes (ZOt and Zed, respectively) and the corresponding

parameters are robust and consistent with the literature.

Since the microstructural contributions to impedance, which

are the main target of this study, lie in the medium and high

http://dx.doi.org/10.1016/j.ijhydene.2016.09.100
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Table 2 e List of parameters fitted for the sample Ni30. The activation energies, calculated according to the Arrhenius

expression vðTÞ ¼ v0 exp

�
� Eact

RT

�
, are reported in the last column.

Parameter 600 �C 650 �C 700 �C 750 �C 800 �C Eact [kJ mol�1]

rScSZ/YSZ [U m2] 3.28$10�5 1.10$10�5 3.91$10�6 1.62$10�6 6.93$10�7 �149

cScSZ/YSZ [F m�2] 6.99 8.62 9.98 11.14 13.34 23

i0TPB [A m�1] 9.60$10�6 2.09$10�5 4.60$10�5 9.78$10�5 1.65$10�4 115

cNi/ScSZ [F m�2] 0.27 0.27 0.27 0.27 0.27 0

Lst [m] 1.05$10�2 /

yH2O [e] 0.0021 for 100%H2, 0.0027 for 50% H2 /
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frequency range, the two models ZOt and Zed are verified in

different electrode microstructures as discussed in the next

section.

Model verification with different electrode microstructures

The quantification of the correlation between electrode

microstructure and electrochemical performance requires the

model to be tested in samplesmadewith the same conducting

materials but different microstructures. In this section the

model presented in Section 2 and calibrated in Sections 3.2

and 3.3 is tested against the experimental EIS data of two

different samples, namely Ni40 and 10x, referring to a cermet

anode with 40% vol. of Ni and a ScSZ scaffold infiltrated 10

times with Ni, respectively, as presented in Section 3.1. As

discussed in the previous sections, the contribution of the

anode microstructure to impedance lies in the medium/high

frequency range, thus only this region of the spectra is

investigated in this section.

In order to corroborate the models ZOt and Zed in samples

Ni40 and 10x, the following approach is used: the same

material-specific parameters rScSZ/YSZ, cScSZ/YSZ, i0TPB and cNi/ScSZ

reported in Table 2, obtained during the calibration of Ni30

(Section 3.2) and discussed in Section 3.3, are kept. Then, the

microstructural parametersAScSZ/YSZ, LvTPB,A
v
Ni=ScSZ and keffScSZ are

fitted to reproduce the experimental impedance spectra of

Ni40 and 10x. If the models ZOt and Zed and corresponding

material-specific parameters are sound, the fitted micro-

structural properties will compare well with FIB-SEM results

and will not vary with the operating temperature. Since the

validation of the diffusion model of the stagnant layer Zst is

not the main concern here, the parameters Lst and yH2O are
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Fig. 6 e Arrhenius plot of the fitted parameters reported in

Table 2. Note the different scales for left and right axis.
treated as open fitting parameters to reproduce the LF feature

and are not subject to further discussion.

The comparison between model simulations and experi-

mental data of samples Ni40 and 10x is reported in Figs. 7 and

8, respectively. As expected, the experimental impedance

spectra in different samples differ in the medium/high fre-

quency range, while the LF feature, ascribed to gas transport

processes in the test rig, remains almost unaffected, which is

consistent with the literature [60]. The Figures show that the

model accurately reproduces the impedance in the medium/

high frequency range for both samples Ni40 and 10x in

different operating conditions.

Table 3 reports the microstructural parameters used to

reproduce the spectra of Ni40 and 10x, in comparison with the

microstructural parameters obtained through their FIB-SEM
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reconstruction. The analysis of Table 3 reveals some inter-

esting insights.

For sample Ni40, the fitted value of LvTPB remains almost

constant with temperature and is essentially coincident with

the TPB density evaluated by FIB-SEM tomography. Similarly,

the fitted normalized conductivity factor keffScSZ does not vary

significantly with temperature and is only slightly larger than

that obtained from the tomographic reconstruction of Ni40.

Both these results are positive indications regarding the val-

idity of the model. The fitted contact area Av
Ni=ScSZ shows some

variability with temperature and is larger than the value of

1.74$106 m�1 obtained by FIB-SEM reconstruction. Since

Av
Ni=ScSZ is coupled to cNi/ScSZ, which affects the characteristic

frequency of charge-transfer reaction at the TPB, this vari-

ability reveals only the difficulty to reproduce the frequency-

dependency of the MF feature, without undermining the

general validity of the Zed model. Similarly, the interfacial area

fraction AScSZ/YSZ, which is constant and smaller than 1, is

larger than expected, since it should be equal to 0.361 ac-

cording to the tomographic results reported in Table 3. This

inaccuracy of the model is attributed to the difficulty of

decoupling the oxygen transfer process, which represents a

small contribution at high frequency, from the strongly

overlapping feature associated with test rig inductance, as

evident from Fig. 5a. Furthermore, this may indicate that the

contact between electrode and the electrolyte is not ideal, as
Table 3 e Microstructural parameters obtained in
samples Ni40 and 10x by EIS fitting, compared with
parameters evaluated in sample Ni40 with FIB-SEM
reconstruction at room temperature. The thickness of the
electrodes, measured with SEM, is 30 mm for Ni40 and
7.5 mm for 10x.

Parameter FIB-SEM Fitted Ni40 Fitted 10x

Ni40 650 �C 700 �C 750 �C 700 �C
AScSZ/YSZ [e] 0.361 0.74 0.74 0.74 0.60

LvTPB [m m�3] 3.86$1012 3.8$1012 4.0$1012 4.0$1012 23$1012

Av
Ni=ScSZ [m2 m�3] 1.74$106 2.9$106 2.6$106 3.0$106 0.9$106

keffScSZ [e] 0.126 0.13 0.15 0.15 0.38
assumed by the model. However, it is noteworthy that the

fitted interfacial area fractionAScSZ/YSZ is smaller than 1, which

is the physical upper limit for the area fraction.

The analysis of themicrostructural parameters obtained in

anode 10x provides additional positive indications regarding

the applicability of the model to electrodes with different

microstructures. The interfacial area fraction AScSZ/YSZ, equal

to 0.60,matcheswell with the estimated porosity f of the ScSZ

scaffold, which is ca. 40% [90], since ideally AScSZ/YSZ z 1ef for

a scaffold. In addition, the normalized conductivity factor of

ScSZ keffScSZ is larger than in cermet electrodes as expected [91]

and lies below the Hashin-Shtrikman upper bound of con-

ductivity [92], confirming that it is realistic. The contact area

Av
Ni=ScSZ, equal to 0.9$106 m�1, is similar to that measured in

cermet electrodes Ni30 and Ni40. This result is credible

because Av
Ni=ScSZ is proportional to the surface area per unit

volume of the ScSZ scaffold, which is similar to that of ScSZ in

cermet electrodes with the same volume fraction of scandia-

stabilized zirconia as reported by Kishimoto et al. [90].

Finally, the TPB density LvTPB estimated in the infiltrated anode

10x is roughly one order of magnitude larger than the TPB

length in cermet anodes, which is in good agreement with

both experimental observations with FIB-SEM [90] and theo-

retical considerations [91,93].

BasedonthegoodmatchingofEISdata inFigs. 7 and8aswell

as theconsiderations regarding themicrostructuralparameters,

the validation of the model in samples Ni40 and 10x, prepared

with different fabrication techniques and showing remarkably

different microstructures, can be considered satisfactory.

As anticipated in Section 2, the model is not limited to

Ni:ScSZ electrodes but can be used, in principle, for any anode

made of a mixture of pure ion-conducting and pure electron-

conductingmaterials. In the following, the model is applied to

the cermet Ni:YSZ anode sintered at 1400 �C reported by

Miyawaki et al. [94]. According to their experimental setup, a

negligible oxygen transfer impedance ZOt is expected because

they used the same ion-conductingmaterial as electrolyte and

within the electrode. In addition, the LF contribution, associ-

ated to the gas transport in the test rig, is minimal in their EIS

spectra. Therefore, the Miyawaki et al. [94] data represent a

useful benchmark to verify the electrode model Zed, which is

the contributionmostly affected bymicrostructural properties

as mentioned before.

According to the FIB-SEM reconstruction reported by

Miyawaki et al. [94], the microstructural parameters of the

cermet Ni:YSZ electrode are LvTPB ¼ 1.5$1012 m�2, keffYSZ ¼ 0.093

and Lan ¼ 8 mm. In the operating conditions reported by the

authors, i.e., 1000 �C and 97% H2e3% H2O, the bulk ionic con-

ductivity of YSZ is 10.23 Sm�1 [20,95] and the exchange current

density i0TPB is equal to 3.2$10�4 A m�1 [86,87]. By applying Eq.

(11) for u ¼ 0 Hz, the calculated polarization resistance

Red ¼ Zed(u ¼ 0) is equal to 0.32 U cm2. According to Miyawaki

et al. [94], the experimental polarization resistance of the

anode at 50 mA cm�2 (i.e., close to OCV) is about 0.34 U cm2.

Therefore, the model Zed presented in this paper provides a

good prediction of the electrode polarization resistance also in

Ni:YSZ anodes without adjusting or fitting any parameters.

Concluding, besides the reasonable trends of fitted param-

eters discussed in Section 3.3, the satisfactory verification with

differentmicrostructuresand thepositiveapplication toNi:YSZ
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anodeswithout any adjustedparameters confirm the reliability

and good predictability of the model proposed in this study.
Conclusions

In this paper a physically-based model for the simulation of

impedance spectra in SOFC anodes was presented, taking into

account the main electrochemical and transport phenomena

and their coupling with the electrode microstructure, recon-

structed with FIB-SEM tomography. The model was calibrated

to reproduce the EIS data of cermet Ni:ScSZ anodes in

different operating conditions. The material-specific param-

eters obtained in the fitting, comprising the capacitance, the

exchange current density and the activation energy of the

hydrogen electrochemical oxidation, were in good agreement

with values reported in the literature. The model was then

validated in anodes with different microstructure, including

an infiltrated electrode, and the fair prediction of the micro-

structural properties was confirmed by FIB-SEM tomography.

The study shows that the correlation between electrode

microstructure and electrochemical performance can be

addressed by using physically-based models, assisted by 3D

tomography to provide the meaningful microstructural

properties, and verified on impedance spectra for different

microstructures. This approach turns out to be the most

suitable to develop and validate interpretative and predictive

modelling tools, capable to decouple the different contribu-

tions that build up the electrode resistance as well as to

accurately infer kinetic and microstructural properties from

impedance data, going beyond the capabilities of phenome-

nological equivalent circuits.

The model presented in this study and the corresponding

material-specific parameters can be used to provide design

indications to optimise the electrode microstructure or as a

diagnostic tool to quantify themicrostructural evolution upon

application on EIS data at different stages of degradation.

Further research will be dedicated to the extension of the

model to simulate anode impedance under d.c. current and

the corresponding effect of water partial pressure.
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Nomenclature

Av
Ni=ScSZ contact area of Ni/ScSZ interface per unit volume

(m�1)

AScSZ/YSZ area of ScSZ/YSZ interface per unit of electrode area

(�)
cNi/ScSZ specific capacitance of the double-layer at Ni/ScSZ

interface (F m�2)

cScSZ/YSZ specific capacitance associated the oxygen ion

transfer at the ScSZ/YSZ interface (F m�2)

Di average diffusivity of species i within the stagnant

layer, with i ¼ 1, 2 ¼ H2, H2O (m2 s�1)

Dik binary diffusivity between gas species i and k (m2 s�1)

Eact activation energy (J mol�1)

f frequency (Hz)

F Faraday constant (C mol�1)

I current density per unit of electrode area (A m�2)

i0TPB exchange current density per unit of TPB length (A

m�1)

ie electronic current density (A m�2)

ivNi=ScSZ current density of Ni/ScSZ double-layer per unit of

electrode volume (A m�3)

iO ionic current density (A m�2)

ivTPB Faradaic current density at TPB per unit of electrode

volume (A m�3)

j imaginary unit (�)

keffNi normalized conductivity factor of Ni phase (�)

keffScSZ normalized conductivity factor of ScSZ phase (�)

Lan anode thickness (m)

Lcables inductance of the cables (H m2)

Lst thickness of the stagnant layer (m)

LvTPB TPB length per unit volume (m�2)

Ni molar flux of gas species i, with i ¼ 1, 2, 3 ¼ H2, H2O,

N2 (mol m�2 s�1)

P pressure (Pa)

R gas constant (J mol�1 K�1)

Rey ohmic resistance of the electrolyte (U m2)

rScSZ/YSZ specific resistance of the oxygen ion transfer at the

ScSZ/YSZ interface (U m2)

T temperature (K)

VNi potential of Ni phase (V)

VScSZ potential of ScSZ phase (V)

x coordinate along electrode thickness (m)

yi molar fraction of gas species i, with i ¼ 1, 2, 3 ¼ H2,

H2O, N2 (�)

Z impedance of the cell (U m2)

Zed impedance of the distributed charge-transfer and

charge transport in the electrode (U m2)

ZOt impedance of the oxygen ion transfer (U m2)

Zst impedance of the diffusion process in the stagnant

layer (U m2)

G dimensionless parameter defined in Eq. (8)

Dz phasor of the generic variable z

h activation overpotential (V)

hconc concentration overpotential in the stagnant layer (V)

sNi bulk electric conductivity of Ni (S m�1)

s
eff
Ni effective electric conductivity of Ni phase (S m�1)

sScSZ bulk ionic conductivity of ScSZ (S m�1)

s
eff
ScSZ effective ionic conductivity of ScSZ phase (S m�1)

f porosity (�)

u angular frequency (Hz)

U dimensionless parameter defined in Eq. (10)
Abbreviations

DRT distribution of relaxation times
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EIS electrochemical impedance spectroscopy

FIB-SEM focused ion beam scanning electron microscope

HF high-frequency feature

LF low-frequency feature

MF medium-frequency feature

Ni30 cermet Ni:ScSZ anode with 30% vol. of Ni

Ni40 cermet Ni:ScSZ anode with 40% vol. of Ni

OCV open-circuit voltage

ScSZ scandia-stabilized zirconia, more specifically

10Sc1CeSZ

SOFC solid oxide fuel cell

TPB three-phase boundary

YSZ yttria-stabilized zirconia

10x infiltrated Ni:ScSZ anode impregnated 10 times with

Ni
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