
Operando visualisation of dendrite growth and dissolution. Three-dimensional images of 

grown dendrites based on reconstruction of synchrotron x-ray tomography data. High-

resolution and reconstructed three-dimensional images of the deposits inside the battery 

separator generated by Focused Ion Beam SEM tomography.  
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Summary 

Alternative battery technologies are required in order to meet growing energy demands, 

and address the limitations of present technologies. As such, it is necessary to look beyond 

lithium ion batteries. Zinc batteries enable high power density while being sources from 

ubiquitous and cost-effective materials. This paper presents, for the first time known to the 

authors, multi-length scale tomography studies of failure mechanism in zinc batteries with 

and without commercial microporous separators. In both cases, dendrites were grown, 

dissolved and regrown, critically resulting in different morphology of dendritic layer formed 

on both the electrode and the separator. The growth of dendrites and their volume specific 

areas were quantified using tomography and radiography data in unprecedented resolution. 

High-resolution ex-situ analysis was employed to characterise single dendrites, and dendritic 

deposits inside the separator. The findings provide unique insights into mechanisms of 

metal-battery failure effected by growing dendrites. 



Introduction 

State-of-the-art lithium-ion battery technology is approaching its inherent limitations of 

maximum energy capacity. As the energy demands of the modern society are constantly 

increasing, new technologies and approaches are required to develop rechargeable batteries 

with high capacity.  Metal-air batteries represent one class of promising candidates for energy 

storage applications, with lithium-air batteries promising the highest theoretical specific 

capacity and energy1, 2. Zinc-air batteries are another emerging option, showing a theoretical 

energy density of 1086 Wh/kg (with oxygen) and low estimated production costs of < 10 

$/kWh3. However, challenges remain in key areas such as cycle life, reversibility and power 

density1, 4. For example, one of the most common failure mechanisms is caused by metal 

dendrites that form during the battery charge cycle, and if they grow sufficiently large they 

may pierce the separator and cause internal short-circuiting and even thermal runaway of the 

battery.  

 

To alleviate the adverse effects of dendrite growth, it is imperative to gain insights into the 

mechanisms of dendrite formation through the use of advanced operando techniques.  This 

study focuses on the initial growth, dissolution and regrowth of zinc dendrites in alkali zincate 

electrolyte widely employed for static and flow zinc-air batteries. Nonetheless, the findings 

of this study can also benefit other metal based systems such as, for example, lithium or 

sodium-air batteries. 

Zinc electrodeposition in alkaline solutions has been studied extensively, and a few 

correlations have been established between deposit growth rate, electrode surface finishing, 

total overpotential, zincate concentration and temperature 5-10. At a given zincate 

concentration the transition of zinc deposition into dendritic mode was found to be governed 

by the total overpotential, with higher overpotential values driving the electrochemical 

reaction into mass-transport limiting mode.  Moderate and low values of overpotential 

significantly affect the morphology of zinc deposits, that may be described as boulder, layered 

and mossy structures 11-13. The morphology is also affected by the forced convection of the 

zincate electrolyte commonly used in zinc-air and zinc-nickel flow batteries 14-16.  These 

rechargeable zinc-based batteries can operate at quite high current densities17, 18 well above 



50 mA/cm2.  Such high current densities may result in localised dendritic growth that can also 

be simulated under well-defined boundary conditions19. Though this dendritic growth can be 

mitigated under certain conditions even at high current using different additives20, 21, it 

cannot be entirely prevented due to the presence of local inhomogeneities associated with 

surface roughness of the zinc electrode. As practical rechargeable zin-based batteries usually 

have quite a large electrodes ( > 50 cm2) there is a high chance for development of local 

inhomogeneities due to surface roughness (high localised current density), stagnant 

electrolyte layer (non-uniform flow), limitations of mass transport etc. Such conditions have 

been re-created in in-situ experiments of the current work in order to demonstrate how 

dendritic grow can cause irreversible capacity loss, battery degradation and even battery 

failure. 

Prior experimental studies of the electrochemical formation of metal dendrites have been 

predominantly ex-situ. However, recent advances in scientific instrumentation and 

electrochemical cell design have enabled some in-situ and operando studies of dendrite 

formation by means of confocal laser scanning microscopy, nuclear magnetic resonance 

spectroscopy, transmission electron and transmission x-ray microscopy 22-25. Synchrotron and 

lab-source X-ray computed tomography have been successfully implemented to study the 

behaviour of zinc anodes and air cathodes in zinc-air batteries during operation 26-28. 

However, these prior studies did not capture initial dendrite formation dissolution and 

successive regrowth with and without the presence of the separator, which is pivotal in 

providing quantitative evidence for degradation and failure models.  

This paper presents an operando, temporally resolved investigation of zinc dendrite growth, 

dissolution and regrowth on bare and separator enclosed zinc electrodes at different length 

scales by means of synchrotron X-ray computed tomography (SXCT).  Regrowth and re-

dissolution are critical given that rechargeable cells are expected to run for thousands of 

charge / discharge cycles. 

Although time-resolved tomography is an indispensable method to study the mechanisms of 

metal dendrite formation in very high temperature systems during the metal solidification, it 

has only recently been extended to the operando study of electrochemical systems29-31. SXCT 

offers the opportunity for non-destructive analytical insight with high spatial and temporal 



resolution of two and three-dimensional data of electrode microstructures with a relatively 

large field of view (typically 1 µm resolution for 5×5×5 mm3 sample size).  

Operando SXCT was performed using a purpose designed cell which replicates the behaviour 

of a large zinc-air cell in conditions suitable for tomography (supplementary materials, Figure 

S1). Such an approach can be also adopted to study electrochemically driven dendrite 

formation, dissolution and separator penetration in other electrochemical systems.    

The synchrotron growth/dissolution studies were combined with higher resolution ex-situ 

FIBSEM to provide true multi-length scale imaging and accurately capture the precise 

structure of dendrites down to tens of nanometres as they pierce battery membranes leading 

to a permanent failure. This comparison is vital for a variety of battery systems comprising 

metal anode such as for example based on organic electrolytes with metallic lithium, sodium 

or magnesium. Altogether, this methodology provides dynamic and multi-length scale 

understanding of growth and dissolution mechanisms and the effect of separator on these 

processes that have never previously been imaged in such detail.  

Experimental 

Cell assembly 

The electrochemical cell used for operando synchrotron XCT was constructed inside a Kapton 

tube of 6 mm interior diameter with a 5 mm zinc rod (Goodfellow) as an anode and a cathode 

from a dense 5 mm carbon hollow tube (Goodfellow). The zinc anode was machined into a 

tip of c.a. 200 m for imaging purposes, and to achieve high local current densities to 

stimulate dendritic growth. In the first experiment, electrodes were physically separated from 

each other by a 3 mm gap in separator-less cells. In the second experiment, a microporous 

hydrophilic polypropylene separator (100 µm thick, VWR) was placed between the zinc tip 

and the carbon hollow tube. An aqueous electrolyte containing 5M KOH and 0.15M ZnO 

(Sigma) was added following cell assembly. The cell was cycled under constant current of 10 

mA  for both deposition and dissolution using an Ivium VERTEX potentiostat, at room 

temperature and ambient pressure.  

Operando experiments and 3D imaging 



X-ray imaging of the operating cell was performed at the Diamond Light Source using the 

Diamond-Manchester imaging beamline I13-2. Monochromatic and polychromatic beams 

were used to optimise transmission though the sample for first and the second experiments 

with an effective X-ray detector pixel size of 0.45 and 0.81 µm respectively. Radiography was 

performed with 0.1-2 s exposures during deposition and dissolution depending on the beam 

used. 3D tomography imaging was carried out at end of each deposition-dissolution step 

whilst the cell held at open circuit (OCV) during rotation. Each tomography scan consisted of 

1800 projections. 3D volumes were reconstructed from the tomographic data using a filtered 

backprojection algorithm and visualised with Avizo 9.0 (FEI). The growing dendrites were 

tracked using in-house algorithm implemented in ImageJ and Matlab. 

Ex-situ experiments 

Ex-situ analysis of the deposited dendrites was carried out using Zeiss Auriga Cross-beam  FIB-

SEM.  Dendrites grown inside the separators were analysed as-received while those grown on 

zinc tip were coated in epoxy for structural support. A secondary electron detector was used 

for the microstructural observation with an acceleration voltage around 1 to 5 kV. A 30 kV Ga 

ion beam with 2nA current were used to serially section and polish the sample surface while 

an electron beam captures secondary electron images of the surface. The process was 

repeated until up to 300 images were captured to provide a full size of dendrites. Image 

foreshortening and alignment corrections were implemented in using Avizo 9.0 (Thermo 

Fisher Scientific) to digitally reconstruct 3D data. 

Results and Discussion 

Zinc dendrite formation, dissolution and regrowth  

Zinc electrodeposition in alkaline media is initiated when a negative (reduction) current is 

applied to the zinc anode according to the half-reaction: 

Zn(OH)4
2- + 2e-  Zn(s) + 4OH- , E0 = -1.199 V vs SHE    (1) 

This reaction, however, is complex and driven via both chemical and electrochemical 

processes5, 8. In the present system zinc dendrites were deposited onto a cone-shaped zinc 

anode by applying a negative 10 mA current (c.a. 30 mA/cm2) between zinc anode and carbon 



air cathode separated by approximately 3 mm of the aqueous zincate electrolyte.  Zinc 

dendrites do not start to develop until a critical overpotential is reached, which initiates 

dendrite growth 10. The time taken to achieve it, is dependent on various parameters such as 

local current density, concentration, and temperature. Following initiation, Figure 1A shows 

dendrites, which can be termed small (<c.a. 30 m) formed on the left part of the tip after 

214 s of deposition (see also Figure 1P for the corresponding chronopotentiometric data). 

These become visible after 100 s under the synchrotron imaging conditions used, indicating 

the initiation time is < 100 s (video V1). Furthermore it is also seen that zinc dendrite 

formation is accompanied by a side reaction resulting in hydrogen evolution (visible as white 

semicircles around the zinc tip) formed via water electroreduction32. As zinc deposition 

proceeds, dendrites appear on various locations on the tip of the cone electrode as well as 

around it (Figures 1B and 1C after 388 and 561 s of deposition respectively). The different 

initiation times of various dendrites are likely to be associated with a non-uniform surface 

finish on the zinc electrode, responsible in turn for non-uniform local current density that 

affects the critical potential and thus the initiation time.  After a period of sufficient deposition 

(Figures 1D and 1E after 734 and 918 s) secondary dendrites become visible and more 

dominant. The secondary dendrites grow on the trunk of the primary dendrites rather than 

directly on the electrode tip itself and prevent primary become any thicker. However, the 

morphology of both primary and secondary dendrites does not change with main supporting 

trunks and blade-like branches. This appears to suggest strong dependence on local 

crystallography and localised current flowing along the secondary dendrites. As before, after 

a period of growth (Figure 1E) it is possible to see the development of ternary dendrites that 

are growing from the trunks of secondary dendrites. 

 The thickness of the primary dendrite has been estimated to be around 2-5 m and this does 

not seem to increase further with deposition time. However, the length or height of dendrite 

trunks and number of branches clearly increase with deposition time, indicative of diffusion 

controlled growth11, 13. The growth of small primary dendrites (longer initiation time) was 

inhibited by surrounding larger counterparts ( >200 m long) as result of higher surface area 

of the large dendrites that effectively draw the localised current away from the small 

dendrites6. Moreover, the flow local current is affected by formation of mechanical contacts 



between branches of two or more adjacent growing dendrites facilitated by evolving 

hydrogen bubbles.  

The radiography data were used to calculate the estimated growth rate of dendrites at 

different locations on the tip. Figure 1R presents growth curves of individual dendrites at 

three locations on the zinc anode tip as schematically indicated by Figure 1Q. Dendrites 

growing on different locations are characterised by different initiation times. Furthermore, 

the growth rate at these locations is not homogenous and deviates from the reported linear 

behaviour10. Such deviation points out the change of localised current during dendrite 

growth, likely associated with the increase of active surface area due to formation of 

secondary and ternary dendrites as well as with the density and the size of the surrounding 

primary dendrites. For example, the growth rate of the right-side dendrite located in the less 

dense area of the tip surrounded by smaller dendrites appears to be linear, as opposed to 

dendrites in the denser centre and the left side (Figure 1Q). Moreover, the figure confirms 

that larger primary dendrites have a shorter initiation time.   

 Through controlling growth, it was possible to acquire 3D synchrotron tomograms of the 

dendrites; although a few collapsed prior to the start of the experiment. (Figure 1F).  

Application of a positive 10 mA current for 15 min between the Zn anode and carbon cathode 

initiates dendrite electro-dissolution or thinning (both branches and trunks) over the 

electrode surface (Figures 1G). This thinning commences from the topmost parts of the 

dendrites and propagates down to the tip. Its mechanisms appear to be quite different from 

the growth where the primary, secondary and ternary dendrites appeared in sequentially one 

on top of another.     As electro-dissolution proceeds, branches of the dendrites become thin 

enough to collapse on neighbouring dendrites (video V2). This proceeds until dendrite trunks 

thin to the point where they are no longer attached to the tip resulting  in a fallen matted 

layer of dendrites on the electrode tip (Figure 1H, 447 s of dissolution). Subsequently, the tip 

itself starts to dissolve and recede (Figures 1I and 1J). Based on comparison of radiographs 

between start and end of the dissolution (15 min) at different locations, the tip recession 

distance was estimated to be approximately 60 µm.  

The second cycle starts with an application of negative 10 mA current between the partially 

dissolved tip covered by matted layer of collapsed dendrites formed during the first cycle 



(cyc1) and the carbon cathode. As in the first cycle, to the growth of new dendrites (cyc2) on 

the tip surface accompanied by hydrogen bubble formation was observed in radiography 

mode. As result, the collapsed and detached cyc1 dendrites were mechanically pushed 

upwards (Figures 1K and 1L). It was not possible to follow the initial growth of cyc2 dendrites 

in radiography mode due to their fine features below the resolution (0.45 m, see 

experimental section) of the detector and also the presence of cyc2 dendrites surrounding 

the tip. Eventually, after 1028 s into the second deposition step (Figure 1M) the cyc2 dendrites 

reconnected with cyc1 ones, resulting in formation of a complex entangled three-dimensional 

network (Figure 1P). The second cycle is therefore strongly dependent on the surface left from 

the first cycle, indicating a certain type of a memory effect.  As deposition continued, the 

fallen dendrites provide a mean to form a dense network around the tip as new dendrites 

formed on the top of this dendrite network (Figure 1R and 1Q). By the end of the second 

deposition step the Zn anode displays a different morphology with a denser and tortuous 

region formed around the receded tip, and new dendrites on top of this region. The presence 

of this denser region effectively impedes the formation of new dendrites on the electrode tip  

itself.  Instead, new dendrites grow from the denser region as result of a decreasing distance 

between the forming dendrites and the counter-electrode. Essentially, each charge and 

discharge cycle is modifying a dense Zn metal surface, with porous and tortuous dendrite 

regions responsible for battery degradation and failure. The effect of repeated cycling 

(deposition/dissolution) can be observed in video V3 and Figure S3. It is clearly seen that zinc 

electrode slowly dissolves and recedes and never returns to its initial state during the cycling 

demonstrating the accelerated degradation of a metal anode in the batteries operating under 

similar conditions. 

In order to compare the morphology of cyc1 and cyc2 dendrites, SXCT scans of the tip of the 

zinc electrode were carried out at the end of the each electrodeposition step. Figure 2 

presents the reconstructed and post-processed 3D visualisation of whole and a specific region 

of the tip after two successive depositions. As collaborated by Figure 2A (video V4) after the 

first deposition, the grown dendrites do not cover the whole electrode tip. Moreover, it is 

clear that the dendrites grow predominantly from microprotrusions around the tip, formed 

during the machining of the tip.  Such a surface roughness is responsible for shorter initiation 

times in comparison to dendrite growth on smooth surcafes10.  The dendrites also vary in 



thickness and height across the electrode with the highest one located on the top of tip likely 

due to high value of localised current. The height of largest dendrites varies between 200 - 

300 µm, while for small dendrites it is between 50 – 100 µm (Figure 2B).  

As also shown by the operando x-ray radiography, the resulting structure was influenced at 

an early stage of growth by different initiation times i.e. the dendrites that formed first 

remained the largest at the end of the deposition and dominated growth. Moreover, 

significant number of small dendrites appears around the large ones, resulting in densification 

of the dendrite base during the first deposition (Figure 2C). 3D tomography confirmed the 

presence of primary, secondary and ternary dendrites, indicating that the growth in height 

occurs at a faster rate than densification of their bases resulting in a “spruce-tree” like 

microstructure, with the trunk and branches protruding from it. Digitally skeletonised 

dendritic structures (Figure 2D) attest to the densification of dendrites at the base, with an 

average branch length of 6 µm.  

The morphology of the dendrites changed when the dendrites were subjected to dissolution 

and second deposition or regrowth. Figure 2A indicates that the second deposition resulted 

in denser dendrite region that still does not completely cover the tip.  However it became 

evident that at the space extending from the tip up to the denser region ( c.a. 30 µm) the 

dendrites were significantly less dense and narrow when compared with their microstructure 

further away (Figure 2F) and with the first growth (Figure 2C). This is the consequence of 

several mechanisms. Firstly, as corroborated by the radiography measurements during the 

dissolution step, dendrites undergo thinning across their whole length. Concurrently, the 

electrode tip itself recedes. As a result, some dendrites become so thin (below the resolution 

of X-ray detector) that they eventually collapse leading to the loss of electrical contact. 

However once deposition is re-initiated, these collapsed dendrites become reattached to the 

zinc tip and new dendrites start to grow from around old ones. As the deposition proceeds a 

dense and thick region forms above the electrode surface preventing densification of the 

electrode tip surface, as occurred in the first deposition step. The skeletonised structure of 

the dendrites (Figure 2G) reveals that the average branch length remains similar at around 5 

µm between the two successive depositions. However, the branches appear substantially 

more entangled and their number as well as their density and distribution across the zinc 

electrode is considerably higher after dissolution and re-deposition. This has also been 



confirmed by quantification of the surface area and volume of the dendrites based on 3D 

tomography reconstructed images (Table 1). Accordingly, the total volume and surface area 

of dendrites is 5.5 and 4.5 times higher between the first and second charge respectively. 

Moreover, the volume specific area reduced by 17 % after the second charge, indicating that 

the dendrite network became more compact, most likely in the denser regions as indicated 

in Figure 2F. This compactification, though does not prevent dendritic growth, may indicate 

the way to engineer zinc electrodes in order to minimise dendrite formation e.g. through 

nanostructuring of zinc electrode surface to form a sponge-like electrodes33. 

 

Effect of current density on Zinc dendrite formation 

In order to see the effect of lower current density on zinc dendrite formation, a negative 5 

mA current (c.a 15 mA/cm2) was applied between the zinc anode and carbon air cathode.  

This value is lower than the calculated limiting current density  (20 mA/cm2) for 0.15 M 

concentrated solution based on the data provided by Diggle10 et al.  The first dendrites 

became visible in radiography 180 s after the deposition starts, indicating a longer initiation 

time in comparison to the higher current case (Figure 3A). As zinc deposition continues, 

dendrites can be seen growing on various locations both on and around the tip (Figure 3B and 

3C after 720 s and 860 s respectively). As in the previous cases, the hydrogen bubble formation 

was accompanying dendritic growth during the entire deposition period (video V5) even at 

this lower current. The average height of dendrites after 720 and 860 s was 50 and 80 m 

respectively. Following 1020 s and 1200 s the dendrites reached an average height of 110 and 

150 m respectively (Figure 3D and 3E), giving an average growth rate of 10 m/min.  This 

compares with 35 m/min for the doubling the current indicating a considerably higher 

growth rate for a higher current.  Under these circumstances, the dendrite growth appears to 

be not purely diffusion limited. Upon finishing electrodeposition, SXCT scan of the tip of the 

zinc electrode was carried out followed by digital reconstruction of the 3D image of the 

dendrites depicted by Figure 3F and 3G. As in the higher current case, it is clear that dendrites 

do not cover entirely cover zinc tip and their growth imitated from microprotrusions around 

the tip.  The dendrites heights vary across the different locations on the tip with largest 

dendrites being 150 - 200 µm high (Figure 3G).  It was also possible to isolate a medium size 



single dendrite (c.a. 60 m) in order to study its internal structure (Figure 3H). Though It is 

possible to distinguish trunk and secondary dendrites (c.a. 20 m), the SXCT resolution (0.81 

m) is too low to discern the finer structure of a dendrite that is better resolved using other 

methods such as FIB-SEM.  

The skeletonised structure of the low current dendrites gives the average branch of dendrites 

8 m versus 5 m for dendrites grown at higher current. Moreover, the high coordination 

number (number of branches growing from the same joint) for low current dendrites was 6 

while for higher current dendrites it was 16.  It indicates that lower current dendrites grow 

higher before branches start forming thus making these dendrites having a thicker trunk 

(Figure 3H) with less branches. This is also confirmed by calculation of the surface area and 

volume of the dendrites based on 3D tomography images (Figure 3, table). Subsequently, the 

volume specific surface area of low current dendrites was 0.63 m-1 as compared against 

higher current dendrites one of 1.04 m-1. Such a lower value of volume specific area provides 

additional indication of dendrite thickening at low current deposition.  

 In order to investigate the effect of high current density on dendrite formation, a negative 

c.a. 80 mA/cm2, was applied between the zinc anode and the counter electrode. The growing 

dendrite become visible in radiography 71 s after the deposition started, indicating a shortest 

initiation time in comparison to the low and higher current cases (Supplementary materials, 

Figure S4 A). As deposition progresses the largest dendrite (number 1) grew to 210, 521 and 

821 m after 143, 222 and 282 s respectively (Figures S4 B-E, video V6). The final dendrite 

network that formed on the tip of the zinc electrode is depicted in Figure S4 F and can be 

observed in video V7. In order to find a correlation between observed initiation time (time 

when the dendrites become visible in radiography) and applied current, the approach 

suggested by Bai et al. has been adopted here34. Briefly, a logarithm of initiation time (Sand’s 

time in the cited article) is plotted versus logarithm of current density and the slope of the 

plot is evaluated via linear fit. Such a plot for zinc dendrites is depicted by Figure S4 H with 

calculated slope of linear fit being -0.54.  This value is lower than that of lithium dendrites in 

non-aqueous concentrated electrolytes34 (between -1.18 and -1.42  ) indicating a significantly 

faster growth rate of dendrites in the aqueous systems due to considerably higher 



conductivity of the electrolyte, lower concentration of zincates and negligible effect of 

electromigration due to presence of supporting KOH electrolyte. 

The growth rate of selected dendrites (Figure S4 G) was evaluated and plotted in Figure S4 I. 

Clearly, the largest dendrite (designated as dendrite 1) has a highest growth rate that is linear 

in comparison to smaller dendrites with much lower growth rate that deviates from linear 

behaviour for in the last 60 s of deposition.  Similarly, the number of branches (Figure S4 J) of 

the largest dendrite was 6 times higher than that of a small dendrite (designated as dendrite 

4). This all indicate that the large portion of current is flowing through the large dendrites 

(similar behaviour was found for a higher current) allowing them to grow and form more 

branches on expense of the growth of the smaller dendrites. Such a behaviour is extremely 

detrimental for battery charging at high currents as a single growing dendrite with localised 

high current density can easily reach the counter electrode within just minutes of operation 

and permanently short-circuit the battery.  



Zinc dendrite formation, dissolution and regrowth: the effect of the porous separator 

In order to minimise internal resistance while maintaining proper electrical insulation 

between the battery anode and cathode an ionically conductive separator (either porous or 

ion-exchange membrane) is employed. The presence of such an electrically insulating layer 

adjacent to the electrode will affect the performance of the battery in general, and dendrite 

formation in particular. In order to investigate the effect of a porous separator on the earlier 

characterised dendrite growth, similar operando experiments were carried out with a 

microporous membrane separator (0.5 µm mean pore size  and 100 µm thickness) between 

the zinc and carbon electrodes (supplementary materials, Figure S2).    

Following the same electrochemical procedure, (see Figure 1F) a negative current of 10 mA 

was applied between the zinc and carbon electrodes to initiate zinc deposition. As in the 

previous case the electrodeposition of zinc was accompanied by hydrogen evolution, with 

some hydrogen bubbles trapped between the separator and the anode. Although it is 

challenging to view the exact moment of dendritic formation on the tip, nonetheless 

dendrites become visible as fine structures developing inside the porous separator followed 

36 s of deposition.  The nature of these finer structures within the membrane below the 

resolution limit of the synchrotron (0.81 µm) was later captured ex-situ in 3D by high 

resolution FIBSEM.  As deposition proceeded, dendrites continued growing inside for 124 s 

more before reaching the other side of the separator (Figure 4A and video V8). Once the 

dendrites broke through the separator they then started to expand and grow on top of it. 

Though the microporous separator provides a very different media that impedes the dendritic 

growth (as compared to Figure 1) it cannot prevent its mechanical breakage caused by 

penetrating dendrites. The presence of the electronically insulating separator alters the local 

potential distribution inside the separator pores as well as imposing mass transport 

limitations on the diffusion of zincate and other ions through the tortuous pore network, 

affecting the growth of dendrites inside.  As deposition proceeded a substantial number of 

dendrites penetrated the separator in multiple locations and continued to grow on the 

separator surface in different directions (Figure 3B). Evidently, after 430 s (Figure 4C) the 

surface of the separator became fully covered with the growing dendrites on top of it.  Also 

noteworthy is the densification of dendrites inside the separator. These “interior” dendrites 



are attached to the anode tip as well as to the dendrites on top of the separator. This 

connection is necessary for continued dendritic growth.  

In contrast to the previous case without the separator, when dendrites were growing 

everywhere on the tip (e.g. Figure 1E), dendrites on top of the separator grow both vertically 

and spread laterally along the separator surface (Figure 4D, 590 s of deposition). Such lateral 

growth was likely affected by the position, size and shape of the carbon counter electrode 

(supplementary materials, Figure S2). By the end of the deposition (Figure 4E) the grown 

dendrites formed a complex dense network of branches connected to the zinc anode tip both 

on top of and inside the separator, with new finer dendrites growing in all directions.  

Application of a subsequent positive 10 mA current between the zinc and carbon electrodes 

did not initiate immediate zinc dendrite dissolution (video V9). Instead, after 20 s the 

formation of oxygen bubbles around zinc dendrites was first observed as result of the water 

oxidation reaction. The dissolution of dendrites was discerned in radiography mode only after 

90-120 s (Figure 4F). As zinc dissolution proceeds (after 170 s) the top layer of dendrites began 

to dissolve. As a result, dendrites became sufficiently thin that they collapsed under their own 

weight over dendrites beneath them, and also on the separator itself. This is in a manner 

similar to that outlined earlier (Figures 1F-H). However, after 240 s (Figure 4G) it can been 

seen that fallen dendrites had accumulated on the separator, forming an electronically 

conducting and hence short-circuiting path between the anode and the counter electrode. 

However, this short-circuit was not permanent because, as dissolution continued, part of the 

electronic path disappeared thus re-enabling the dissolution process for a while before fallen 

dendrites re-formed the electronic path (see voltage spikes in supplementary materials Figure 

S5). The rate of dendrite dissolution is significantly reduced since part of the current flowing 

through the zinc electrode is effectively shunted by the short-circuits. From 680 s to the end 

of the dissolution step, no significant change in size and denseness of dendrites (Figure 4H) 

was observed. This indicates that the formation of partial short-circuits becomes a dominant 

effect, preventing further dissolution of the dendrite network on top of the separator. The 

radiography data shows that zinc tip itself receded by approximately 11 µm indicating that 

the dendrite under the separator thinned and detached from the tip thus allowing its 

continuing dissolution.   



An attempt to re-grow partly dissolved dendrites was then carried out by applying a negative 

10 mA current for 15 min (video V10). It is apparent that new dendrites started to form during 

the deposition step, as indicated by densification of the dendrite network on the separator 

surface and the emergence of new dendrites on the edges of the old ones (Figure 4I, after 

304 s). Clearly, the receded tip under the separator has reconnected with the dendrites inside 

of it to enable dendrite formation on top. However, as a result of the re-growth, the formation 

of partial short-circuits intensified by reconnecting fallen dendrites located on the separator, 

impeding the growth of new dendrites. By 656 s of the deposition new large dendrites (c.a. 

150 µm) grew on the edges away from the tip between the separator and dendrites network 

(Figure 4J). No new dendrites formed subsequent to 656 s of the deposition i.e. by this time 

the zinc-air cell had become completely short-circuited. 

As in the previous case of the cell without separator, it was possible to evaluate the dendrite 

growth with respect to time at different directions on two specific locations around the zinc 

tip that illustrated by 3D reconstructed XCT tomography image in Figure 4K and video V11. 

The growth profiles include dendrite formation both in the separator and on top of it. The 

first dendrites that started to grow inside the separator were located on the left side of the 

tip. The profile (Figure 4L) indicates that, before the dendrites break out of the separator, 

their growth slows down after approximately 84 s of the deposition. This may be ascribed to 

mass transport limitations imposed by the torturous structure of the microporous separator.  

The growth inside the separator on the right side started later (c.a. 200 s), however the 

dendrite reached the separator surface faster than those that grew on the left likely to higher 

local current. Analysis of operando radiography data indicates that the dendrites growing on 

top of the separator have horizontal and vertical components (Figure 4K). Due to resolution 

limitations (0.81 µm pixel size, see the experimental section) and the high density of the 

growing dendrites, it was not possible to follow the growth of individual dendrites. Instead 

the growth rate was estimated based on the expansion of the dendrite “front”. Measured at 

two different locations on the tip, it is clear that the rate of vertical and horizontal growth is 

different up to 413 and 326 s for the right and left regions respectively. Thereafter, the rate 

of vertical and horizontal components of the dendrite growing front on both sides appears to 

be very similar, though shifted along the X-axis (time) as result of the different initiation times 

of dendrite growth. The difference between the rate of horizontal and vertical growth arises 



as a combined effect of two main factors- the location (distance to zinc tip) and shape of the 

counter electrode (supplementary materials, Figure S2)  and density of dendrites inside the 

separator During the zinc deposition step the number of dendrites breaking out of the 

separator is increasing, enabling further growth on the surface of the separator. The change 

in the growth rate for vertical components may therefore be a result of reaching a certain 

dendrite density both inside and on top of the separator necessary for higher rate of vertical 

growth on it (see Figure 3D corresponding to that specific moment). It appears that after 

approximately 600 s the rate of vertical and horizontal components of dendrite growth 

become very similar up until the end of the deposition.  

Figure 4M presents the reconstructed and post-processed 3D visualisation of the cross section 

of the zinc tip followed radiography studies. In comparison to Figure 2A there is very little 

coverage of whole electrode tip with zinc dendrites on the tip itself due to the screening effect 

of the separator. As shown in Figure 3L, the dendrites first deposit under the separator in the 

vicinity of the tip where the correct is expected to be higher. These sharp “blade-like” 

microstructures of the forming dendrites facilitate mechanical perforation of the separator 

layer. However once inside the separator the morphology of dendrites changes entirely as is 

discussed in the next section. At the present resolution, it appears highly irregular and is 

characterised by the presence of regions with quite dense deposits. These zinc deposits 

promote further dendrite growth on top of the separators, serving as highly electrically 

conductive current pathways.    

The dendrites grown on the top of the separator appear to be substantially denser when 

compared to those grown on zinc electrode with no separator present (Figure 2). It is 

confirmed by surface and volume quantification summarised by Table 2. As indicated in the 

table,  the volume and surface area of the dendrites grown on top of the separator are 50  

and 8 times larger, respectively when compared to those grown with no separator present. 

As result the volume specific area of the dendrites on top of the separator is 6.5 times smaller. 

The skeletonised data reveal also a higher average branch length of ca. 10 µm in comparison 

to those in Figure 2D.  Evidently, most of the densification occurred between 0 and 600 s 

when the vertical growth rate was lower than that of the horizontal one allowing dendrites 

to grow thicker (Figure 3L) with significant dendrites branch elongation happening thereafter.  

Although the presence of a microporous separator cannot stop dendritic growth, it definitely 



affects the growth direction. One of the strategies ,therefore, to inhibit it comprises of 

engineering a separator that will promote the horizontal growth and impede the vertical one, 

e.g. using a hydrogel based materials35.  

 

Ex-situ high resolution characterisation of zinc dendrite morphology 

SXCT 3D-reconstructed data could not provide insight into finer microstructural details of a 

single dendrite due to low resolution and contrast between various parts of the dendrites 

(supplementary materials, Figure S6). Therefore, in order to characterise and accurately 

capture the high resolution sub-micron structure of the dendrites, ex-situ FIB-SEM analysis 

was carried out. The dendrites that grow under mass transport limitations on zinc electrodes 

appear like a “forest” of spruce tree-like shapes over the electrode (Figure 5A). Clearly, it is 

possible to identify a trunk (primary dendrites) and branches (secondary and ternary 

dendrites) attached to it. However, due to the denseness of the dendrites it was difficult to 

observe the structure of a single dendrite.  For better visualisation of single dendrite 

structure, an individual dendrite was picked up, isolated from the “forest” and embedded in 

epoxy for a slice-and-view experiment using FIB-SEM. The meticulous procedure of dendrite 

extraction, imaging, reconstruction and mechanical simulation in 3D is described in many 

details elsewhere36. As indicated by Figure 5B, the interior of the single dendrite is quite dense 

and homogenous at the given resolution with some parts found to have a thickness of less 

than 500 nm. Variations in contrast between parts of the dendrite indicate the different 

crystalline structure of the branches that grow on the trunk. This is consistent with the 

observed growth of secondary dendrites from primary dendrites at particular crystallographic 

surfaces that provide an easier  nucleation and growth site11.  Following the slice-and-view 

experiment a single dendrite structure was reconstructed in 3D from a stack of generated 

slices, and is depicted in Figure 5C. 

Its trunk is not entirely straight and it starts to bend at c.a. 60 µm from the bottom, likely as 

result of mechanical pressure exhorted by the growing surrounding dendrites.  Although 

sample preparation cannot be ruled out in bending, the structure of the dendrite is well 

captured at high resolution. Though the reconstructed dendrite was not the longest one (c.a. 

150 µm, compare with Figure 1E) it had the traits shared by most of the deposited dendrites. 



The trunk of the dendrite at the bottom of the figure (the part that was attached to zinc 

electrode) is only 5 m long with no large branches grown on it up to a height of around 60 

m. Contrastingly, the middle part of the dendrite has branches that extend up to 30 m. At 

the top of the dendrite, the length of the branches decreases to c.a. 10 µm.  The thickness of 

the branches varies between 0.5 and 1 µm and it is possible to discern nucleation sites on the 

branches where ternary dendrites begin to form. Based on FIBSEM 3D data of the single 

dendrite it is possible to evaluate its volume specific area at the given resolution as presented 

by Table 3. 

It should be pointed out that the difference between the volume specific area of a single 

dendrite and one calculated for all the dendrites on the tip is only 13% indicating quite a good 

correlation between SXCT and FIBSEM data. Moreover, based on volume or/and surface area 

it is possible to estimate the average number of dendrites initially grown on the tip as 320 

while for the second growth number of dendrites approaches 1620. This high number of 

dendrites formed in cycle 2 support the radiography based observation of formation of new 

dendrites onto of the existing entangled dendrite network with high surface area..    

Electron Backscattering Diffraction (EBSD) is a powerful tool to characterise crystalline 

structures of the metals and could be useful to map crystallographic orientation of the grown 

dendrites. Zinc electrode with grown dendrites on top of it was embedded in epoxy and 

polished to get smooth cross-section for EBSD mapping (supplementary materials, Figure S7). 

Though the mapping of the electrode identified many crystallographic planes, as expected, of 

polycrystalline zinc, it was not possible to identify and characterise dendrites as as they 

appear to be too small for detection with some likely to be destroyed during the sample 

preparation.  

It has been already reported that the presence of the separator substantially affects dendrite 

growth and morphology. Figure 4D demonstrates fracturing of the separator by dendrites 

growing underneath, with cracks of up to 15 µm width appearing in different locations. It 

should be noted that the characterisation of dendrites in the separator was carried out at 

locations away from areas of significant separator damage. A close look into the crack formed 

in the separator reveals a considerable amount of zinc crystallites beneath the crack, and a 

few appearing on top of the separator. Some of the crystallites on the top (Figure 5E) looks 



like needles, being 800 nm thick and 15 µm long while others appear like boulders being 4 µm 

wide and 8 µm long. These ‘boulder’ and ‘needle’ structures11, 13 are quite dissimilar to the 

deposited dendrites and likely formed at much lower local current density, affected by the 

porous separator and the distance away from the tip of zinc electrode where the most current 

was concentrated.  

Zinc dendrites inside the separator (Figure 5F and G) can be clearly identified from the slice—

and-view measurement. The morphology of these dendrites is entirely different from the 

dendrites growing on top of the separator (Figure 5C), appearing to be a quite dense 

structures that first progress through filling pores inside the separator. This structure is then 

attached to ‘boulders’ and ‘needles’ on the top of the separator indicating that likely most of 

the ‘boulders’ and ‘needles’ are interconnected between themselves through the underlying 

dense structure. The growth of this structure is responsible for irreversible damage to the 

separator through the creation of many deep cracks over the separator surface where the 

dendrites form. A 3D reconstructed region of the zinc dendrites inside the separator is shown 

by Figures 5H. The reconstructed image of zinc dendrites indicates that the deposited 

structure is dense at the given resolution, but tortuous in nature due to the separator. The 

connection between the dendrite on top of the separator to the deposit inside of it can be 

seen in Figure 5I.  Some of these deposits are more than ten microns long (Figure 5H) 

indicating that polymer material of the pore walls is removed and ‘squeezed’ around the 

deposits as indicated by localised charging effects during SEM analysis (see Figure 5G). 

Analysis of these deposits and the enclosing separator indicates that the volume specific area 

of the deposits is only 20% smaller than that of the separator interior (Table 3).  In other words 

deposits fill the pores of the separator that provide preferential diffusion pathways for zincate 

anions and attain the morphology and shape of the polypropylene (PP) separator pores that 

is very dissimilar to dendrite formation under limited mass transport. Nonetheless the 

deposition inside the pores appears to be inhomogeneous with some pores filled with the 

zinc deposits while the others are not. When the pore that ends on the separator surface 

becomes filled with zinc deposit it turns into a nucleation site for dendrites to grow on the 

separator. Once on the separator the dendrites will continue growing and densifying in 

different directions up until the formation of a permanent short-circuit between a zinc anode 

and counter electrode.   



 

Conclusions: 

Multi-length scale tomography and radiography studies, operando and ex-situ, provide 

unprecedented insight into formation and dissolution of zinc dendrites in alkaline solutions 

during charge and discharge of metal zinc-air and other zinc based batteries.  

It was established that the dendrites start to form on surface inhomogeneities where the local 

current is high, and proceed to grow to a final state with various length dendrites present on 

the electrode surface with the longest dendrites having a shortest initiation time. During 

growth primary, secondary and ternary dendrites form. This growth does not necessary 

follows the linear behaviour as function of time as it also depends on surrounding dendrites 

and localised current. Moreover, the higher the operational current density was, the shorter 

and bigger were the initiation time and the dendrite height respectively. The dissolution 

process (battery discharge) causes dendrites thinning followed by their collapse, detachment 

from the electrode surface and thinning of the electrode bulk. Regrowth (battery charge) of 

the dendrites result firstly in the formation of the new dendrites on the electrode surface 

followed by their reattachment to the dendrites from the previous cycle, forming a complex 

entangled network of dendrites with denser regions closer to the electrode tip and new 

dendrites forming on top of these regions. As result, the total surface and volume of the 

dendrites between cycles one and two increased by 5.5 and 4.5 times respectively. Once 

formed the dendrites cannot be completely removed in consecutive cycles by dissolution. 

Instead, in every following cycle the bulk of the electrode will be covered by an increasingly 

higher surface area porous metal dendrite network sparsely and inhomogeneously attached 

to the bulk electrode.   

Critically, the presence of the separator significantly affects the growth and morphology of 

zinc dendrites as described. Dendrites that start growing on the electrode surface eventually 

penetrate the separator and continue growing inside at different rate as they fill the 

submicron pores of the separator. The morphology of zinc dendrites inside the separator 

appears as dense and tortuous deposits and is completely different from “spruce-tree” 

structures growing on zinc electrodes. Dendritic growth is screened through the separator so 

that the growth direction is not directly in line with the counter-electrode until it has 



successfully passed through it. On passing through the separator, dendrites continue growing 

on top of it both horizontally and vertically covering more of the separator surface. As result, 

after the growth, dendrites formed a compact entangled network atop with volume specific 

area 6.5 times less than in the case with no separator present. Following dissolution, topmost 

part of the dendrites thins and partially detaches with the bulk of dendrites still attached to 

the separator. The detached dendrites are more mobile than was assumed on the separator 

and cause temporary short-circuits that becomes permanent during the next deposition step.  

Microporous separators widely used in battery systems cannot prevent dendrite formation 

on the electrode surface and subsequent growth through them. Once the dendrites passed 

through the separator, it was impossible to dissolve them back entirely and prevent short-

circuiting of the system. The findings can serve as a basis to begin understanding metal-

battery failure mechanisms as they are affected by dendrite morphology. Consequently, 

dendrite formation might be mitigated  by nano/micro structuring zinc electrode morphology 

(e.g. using a “spongy” anode) and/or engineering of the separator to enhance the 

lateral/horizontal component of the dendritic growth  in combination with organic and 

inorganic additives, which effect will be investigated in the future work.   
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 Figure 1. Operando study of zinc dendrite growth, dissolution and regrowth in the cell without 

separator at current density of 30 mA/cm2. 

Zinc dendrite growth after A) 214 s, B) 388 s, C) 561 s, D) 734 s and E) 918 s. Zinc dendrite dissolution 

after F) 10 s, G) 229 s, H) 447 s, I) 655 s and J) 873 s.  Zinc dendrite regrowth after K) 122 s, L) 589 s, 

M) 1028 s, N) 1485 s and O) 1953 s.  Chronopotentiometric curve of zinc deposition and dissolution 

corresponding to the radiography experiments P). Dendrite height/length versus time at certain 

locations on the tip R) and Q) three locations for direct probing of dendrite growth. 

 

 

 

 



 Figure 2. 3D analysis  of  zinc dendrites. 

A-C) reconstructed 3D image of dendrites on zinc anode tip following the initial growth, D) 

skeletonised image of the dendrites, E) 3D reconstruction of the tip with regrown dendrites, F) 

reconstructed 3D image of the regrown dendrite cluster G) skeletonised image of the regrown 

dendrites on the zinc anode tip. 
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Figure 3. Operando study of zinc dendrite growth at 15 mA/cm2 in the cell without separator.  

Zinc dendrite growth after A) 180 s, B) 720 s, C) 860 s, D) 1020 s and E) 1200 s. 3D analysis of zinc 

dendrites: F) 3D reconstructed tip, G) 3D reconstructed image of dendritic cluster, H) 3D reconstructed 

single dendrite. Table with dendrite volume, surface and volume specific surface. 

 

 

  



Figure 4. Operando study of zinc dendrite growth, dissolution and regrowth at 30 mA/cm2 in the 

cell with the porous separator.  

Zinc dendrite growth after A) 200 s, B) 300 s, C) 430 s, D) 590 s and E) 890 s. Zinc dendrite dissolution 

after F) 120 s, G) 240 s and H) 680 s.  Zinc dendrite regrowth after I) 304 s and J) 656 s. K) Reconstructed 

3D image of the dendrites and the on top of the separator and the tip indicating dendrite growth 

directions. L) Dendrite growth vs. time on left and right sides of the zinc anode. M) Cross-sectional 

image of the dendrites that have perforated the separator after the initial growth. 

 

 

 

 

 

 

 

 



 

Figure 5. FIB-SEM analysis of zinc dendrites grown at 30 mA/cm2.   

A) Deposited dendrites B) Cross sectional view of a single dendrite embedded in epoxy. C) 3D 

reconstructed image of the single dendrite, FIB-SEM micrographs of D) Separator torn by dendrites E) 

Fine dendrite structures grown through the separator F) Cross-sectional view of the dendrites grown 

inside the separator G) Cross-sectional view of zinc deposits in the separator outlined by dotted lines 

that are connected to the dendrites on top of it. H) and I) 3D reconstructed image of the zinc dendrite 

that is attached to the zinc deposits (dark blue) grown inside the porous separator (transparent light 

blue).  

 

 

 

 

 

 

 

 

 



Tables.  

Table 1. Surface area and volume of the dendrites after first and second growth 

 

 

Table 2. Surface area and volume of the dendrites with and without separator after initial growth 

 

 

Table 3. Surface area and volume of dendrites on and inside the separator after initial growth 

 Voxel resolution 

[µm] 

Volume  

[µm3] 

Surface area        

[µm2] 

Volume specific 

area [µm2 / µm3] 

Dendrites on tip 0.45 (XMT) 6.01 x106 6.24 x106 1.04 

Single dendrite  0.39 (FIBSEM) 0.0175 x106 0.0209 x106 1.19 

 Inside the separator  

Dendrites (Zn)  0.04 (FIBSEM) 0.89 x103 2.43 x103 2.7 

Separator (PP) 0.04 (FIBSEM) 1.25 x103 3.88 x103 3.1 

 

 Volume  

[µm3 x106] 

Surface area        

[µm2 x106] 

Volume specific area 

[µm2 / µm3] 

First growth 6.01 6.24 1.04 

Second growth 33.0 28.3 0.86 

 Voxel resolution 

[µm] 

Volume  

[µm3 x106] 

Surface area        

[µm2 x106] 

Volume specific 

area [µm2 / µm3] 

No separator 0.45 6.01 6.24 1.04 

With separator 0.81 312.76 50.16 0.16 



 

Supplementary materials. 

In order to carry out in-operando SXCT experiments conditions, a special tubular cell have been designed 

and assembled, as indicated by Figure S1. One end of the zinc electrode was machined into a conical shape 

in order to minimise X-rays attenuation by bulk of the zinc electrode and allowing study of dendritic 

growth at submicron resolution.  
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Figure S1. Operando cell used in synchrotron tomography experiments and its CAD design 

Supplemental Text and Figures



 

For operando experiments involving microporous separators, they were sandwiched between conical zinc 

anode and hollow carbon tube electrode as indicated by 3D CAD visualisation in Figure S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microporous separator 

Hollow carbon counter electrode 

Metal zinc anode 

Figure S2. CAD rendering of the cross-sectional part of the in-operando cell showing the 
location of separator, carbon and zinc electrodes 



 

Successive steps of equal time length for dendrite formation and dissolution corresponding to charge and 

discharge in a battery indicate irreversible erosion of bulk of the zinc electrode. Initial electrodeposition 

(Figures S3 A-B) produced sharp, sword-like dendrites that partially dissolved upon the completion of the 

first dissolution step (Figure S3 C). Second and subsequent deposition-dissolution cycles resulted in a 

mixture of fresh, sharp dendrites on the top of the thickened mossy structures (Figures S3 D-E). By the 

end of the 5th cycle, the bulk of zinc electrode receded by c.a. 100 m causing significant detachment of 

large dendrite agglomerates that are floating around mossy regions located the zinc tip (Figure S3 F).   

 

 

 

 

 

 

 

 

 

 

  

Figure S3. Time sequence radiography showing the irreversibility of the growth process under repeated deposition and dissolution 
cycles. (a) fresh zinc electrode, (b) initial dendritic growth, (c) first dissolution of the dendrites, (d) zinc electrode after two 
deposition-dissolution cycles, (e)zinc electrode after 5 deposition-dissolution cycles and (f) cross-sectional view of zinc tip at the 
end of the cycling 

(f) 



 

Dendritic growth under a very high current density of c.a. 80 mA/cm2 was carried out in zinc-zinc cell 

where one zinc electrode was dissolving and dendrites were growing on another one.  Zinc electrodes 

were 2 mm diameter rods, sourced from Goodfellow. During a very short time of the deposition (< 5 min), 

some of the dendrites reached a height of almost 1 mm. These and other dendrites were quantified in 2D 

to estimate their height and approximate number of branches. 2D dendrites were skeletonised and their 

number of branches were determined using AVIZO 9.0 software. Accordingly, the large dendrites have a 

higher growth rate and more branches as they grow. The initiation times under different current densities 

are compared as well in the logarithmic plot.  

  

 

Figure S4. Time sequence radiography of dendrites growing under high current density of 80 mA/cm2.after A) 71 s, B) 143 s, C) 182 s, D) 
222 s, E) 282 s. F) radiograph of fully grown dendrites, G) dendrite selection for analysis H) Logarithmic plot of dendrite initiation time vs 
corresponding current density with linear fit I) Selected dendrite growth rate and J) Estimated number of branches for selected dendrites  
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During initial dendrite formation in the in-operando cell with a separator, no voltage spikes were observed 

indicating that the growing dendrites have not short-circuited the cell. However, during the dissolution 

step a first voltage spike was observed after 5 min since the dissolution started strongly suggesting the 

formation of a temporal short-circuit. It disappeared shortly after and the dissolution continued. During 

the re-growth (second deposition) the permanent short-circuit occurred thus stopping any further cell 

operation. 
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Figure S5. Chronopotentiometric experiments in in-operando cell with a microporous separator. Voltage 
spikes associated with a short-circuit formation are distinguished during dissolution and re-growth steps. 



 

A single dendrite was identified and 3D-reconstructed using synchrotron data. As indicated in Figure S6 it 

is possible to discern secondary dendrites (branches) attached to the primary dendrite (trunk). However, 

low resolution of the detector (800 nm) and contrast does not allow getting a closer look into finer 

structure of a single dendrite, neither it is possible to isolate a single dendrite from the dendrite 

agglomerates thus requirng the use of other thecniques such as FIBSEM. 

 

  
Figure S6. (a) Cross-sectional and (b) 3D reconstructed dendrite structure from a synchrotron 
tomography experiment at resolution of 800 nm 



 

Zinc electrode with deposited dendrites was embedded into epoxy and carefully polished to exposed a 
cross section with connected dendrites. This cross-section with regions of connectivity between the 
dendrites and zinc electrode has been investigated using EBSD (electron back-scattering diffraction). A 
crystal orientation map of the edge of the tip is clearly seen and pointing out polycrystalline structure of 
the zinc electrode. However, the dendrites could not be clearly seen in the EBSD map; moreover it is 
difficult to find a trend between crystallographic orientation of the grains and the dendrites, nor to 
examine if a preferred dendrite growth orientation is present. More robust and methods of sample 
preparation with a great deal of precision are required and can be explored in the future work. 

 

Figure S7. EBSD inspection of the dendrites area connected to the dense tip; (a) SE SEM image of the 
same area, (b) a grain map of the area and (c) EBSD map of the area. 



  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets
video V1 (zn_dendrites_inital_growth).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373781&guid=b2bd9474-42b0-4baf-821d-9fb2873ed766&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V2 (zn_dendrites_dissolution_regrowth).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373782&guid=e7257298-c78a-4961-9e98-ec9fe47e8c82&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets
video V3 (zn_electrode_dissolution).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373783&guid=72206842-8dc4-4819-942c-64df8ae97e32&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V4 (zn_dendrites_in_3D).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373784&guid=8898200a-9c7b-47bf-ba02-925c2c4bb364&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V5 (zn_dendrites_growth_lowcurrent).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373785&guid=be6c1e3e-a9a2-4f5a-a4f3-1ddb6e275e30&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V6 (zn_dendrites_growth_highcurrent).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373786&guid=66529168-7498-4162-9860-b56a33427c0a&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V7 (zn_dendrites_highcurrent_aftergrowth).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373787&guid=ea3d32b6-433e-40b1-98fa-7f0365a82744&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V8 (zn_dendrites_initial_growth_on_separator).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373788&guid=6890db86-8772-4a54-9695-4e3e4c3feeb0&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V9 (zn_dendrites_dissolution_on_separator).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373789&guid=754fe898-0fab-4a4e-a776-27e835c79ce5&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V10 (zn_dendrites_regrowth_on_separator).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373790&guid=176cccf4-7d48-4d1f-9b0f-6ac5d086dba4&scheme=1


  

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

video V11 (zn_dendrites_on_separator_in_3D).avi

http://www.editorialmanager.com/joule/download.aspx?id=1373791&guid=3bca5ec8-0500-4b4c-843a-5ca973015e04&scheme=1

	graphic abstract
	new_dendrite_paper_final
	supplementary



